Что такое теплопроводность штукатурки
Сравнение теплопроводности строительных материалов
Любой человек согласится, что дома должно быть всегда уютно: летом не жарко, зимой – тепло. За сохранение тепла и прохлады «отвечает» показатель теплопроходимости. Чем лучше перегородка проводит, то есть отдает тепло, тем быстрее он будет остывать и нагреваться. Стены и крыша дома должны иметь низкую проводность, а некоторые элементы, например, радиаторные батареи, могут быть хорошими проводниками. Узнать теплопроводность бетона и других смесей и блоков можно по таблицам или рассчитать по формуле.
- Что это такое
- Особенности выбора на основе этих показателей
- Влияющие факторы
- Коэффициент материалов из бетона
- Сравнение строительных материалов по толщине
Назначение теплопроводности
Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.
На схеме представлены показатели различных вариантов
Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.
Таблица теплопроводности материалов и утеплителей
Теплопроводность основное свойство теплоизоляции. Это качество материала передавать тепло. Обозначается коэффициент теплопроводности символом «лямбда». Если данный коэффициент имеет низкое значение, эффективность утеплителя возрастает.
Для поддержания в помещении комфортного климата, показатели теплопроводности рассчитаны для каждого региона.
Теплопроводность утеплителей таблица
Наименование материала | Коэффициент теплопроводности Вт/(м·°C) | ||
---|---|---|---|
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Каменная минеральная вата 25-50 кг/м3 | 0.036 | 0.042 | 0.045 |
Каменная минеральная вата 40-60 кг/м3 | 0.035 | 0.041 | 0.044 |
Каменная минеральная вата 80-125 кг/м3 | 0.036 | 0.042 | 0.045 |
Каменная минеральная вата 140-175 кг/м3 | 0.037 | 0.043 | 0.0456 |
Каменная минеральная вата 180 кг/м3 | 0.038 | 0.045 | 0.048 |
Стекловата 15 кг/м3 | 0.046 | 0.049 | 0.055 |
Стекловата 17 кг/м3 | 0.044 | 0.047 | 0.053 |
Стекловата 20 кг/м3 | 0.04 | 0.043 | 0.048 |
Стекловата 30 кг/м3 | 0.04 | 0.042 | 0.046 |
Стекловата 35 кг/м3 | 0.039 | 0.041 | 0.046 |
Стекловата 45 кг/м3 | 0.039 | 0.041 | 0.045 |
Стекловата 60 кг/м3 | 0.038 | 0.04 | 0.045 |
Стекловата 75 кг/м3 | 0.04 | 0.042 | 0.047 |
Стекловата 85 кг/м3 | 0.044 | 0.046 | 0.05 |
Пенополистирол (пенопласт, ППС) | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Экструдированный пенополистирол (ЭППС, XPS) | 0.029 | 0.03 | 0.031 |
Пенобетон, газобетон на цементном растворе, 600 кг/м3 | 0.14 | 0.22 | 0.26 |
Пенобетон, газобетон на цементном растворе, 400 кг/м3 | 0.11 | 0.14 | 0.15 |
Пенобетон, газобетон на известковом растворе, 600 кг/м3 | 0.15 | 0.28 | 0.34 |
Пенобетон, газобетон на известковом растворе, 400 кг/м3 | 0.13 | 0.22 | 0.28 |
Пеностекло, крошка, 100 — 150 кг/м3 | 0,043-0,06 | ||
Пеностекло, крошка, 151 — 200 кг/м3 | 0,06-0,063 | ||
Пеностекло, крошка, 201 — 250 кг/м3 | 0,066-0,073 | ||
Пеностекло, крошка, 251 — 400 кг/м3 | 0,085-0,1 | ||
Пеноблок 100 — 120 кг/м3 | 0,043-0,045 | ||
Пеноблок 121- 170 кг/м3 | 0,05-0,062 | ||
Пеноблок 171 — 220 кг/м3 | 0,057-0,063 | ||
Пеноблок 221 — 270 кг/м3 | 0.073 | ||
Эковата | 0,037-0,042 | ||
Пенополиуретан (ППУ) 40 кг/м3 | 0.029 | 0.031 | 0.05 |
Пенополиуретан (ППУ) 60 кг/м3 | 0.035 | 0.036 | 0.041 |
Пенополиуретан (ППУ) 80 кг/м3 | 0.041 | 0.042 | 0.04 |
Пенополиэтилен сшитый | 0,031-0,038 | ||
Вакуум | |||
Воздух +27°C. 1 атм | 0.026 | ||
Ксенон | 0.0057 | ||
Аргон | 0.0177 | ||
Аэрогель (Aspen aerogels) | 0,014-0,021 | ||
Шлаковата | 0.05 | ||
Вермикулит | 0,064-0,074 | ||
Вспененный каучук | 0.033 | ||
Пробка листы 220 кг/м3 | 0.035 | ||
Пробка листы 260 кг/м3 | 0.05 | ||
Базальтовые маты, холсты | 0,03-0,04 | ||
Пакля | 0.05 | ||
Перлит, 200 кг/м3 | 0.05 | ||
Перлит вспученный, 100 кг/м3 | 0.06 | ||
Плиты льняные изоляционные, 250 кг/м3 | 0.054 | ||
Полистирол бетон, 150-500 кг/м3 | 0,052-0,145 | ||
Пробка гранулированная, 45 кг/м3 | 0.038 | ||
Пробка минеральная на битумной основе, 270-350 кг/м3 | 0,076-0,096 | ||
Пробковое покрытие для пола, 540 кг/м3 | 0.078 | ||
Пробка техническая, 50 кг/м3 | 0.037 |
В таблице приведены показатели нормативных документов.
Так как материалы разных производителей отличаются по характеристикам, необходимо обращать на это внимание при покупке.
Теплопроводность зависит от толщины строительных материалов. Чем тоньше продукция, тем меньше теплоизоляции потребуется, чтобы осуществить монтаж.
Сравнение теплопроводности строительных материалов по толщине
Использование значений теплопроводности на практике
Материалы, используемые в строительстве, могут быть конструкционными и теплоизолирующими.
Существует огромное количество материалов с теплоизолирующими свойствами
Самое большое значение теплопроводности у конструкционных материалов, которые используются при возведении перекрытий, стен и потолков. Если не использовать сырье с теплоизолирующими свойствами, то для сохранения тепла потребуется монтаж толстого слоя утеплителя для возведения стен.
Часто для утепления строений используются более простые материалы
Поэтому при возведении постройки стоит использовать дополнительные материалы. При этом значение имеет теплопроводность строительных материалов, таблица показывает все значения.
В некоторых случаях более эффективным считается утепление снаружи
Полезная информация! Для построек из древесины и пенобетона не обязательно использовать дополнительное утепление. Даже применяя низкопроводной материал, толщина сооружения не должна быть менее 50 см.
Обобщения закона Фурье [ править | править код ]
Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл [4] , а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом: [5]
τ ∂ q ∂ t = − ( q + ϰ ∇ T ) . +varkappa ,nabla Tright).>
Если время релаксации τ пренебрежимо мало, то это уравнение переходит в закон Фурье.
Коэффициент теплопроводности.
Количество тепла, которое проходит через стены (а по научному — интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.
Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло. Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас в качестве материалов для утепления зданий наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов. Набирает популярность новый материал с улучшенными теплоизоляционными качествами — Неопор.
Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда) и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2., то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур стену сделать 10 см, то потери тепла будут уже 67 ватт. Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.
Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.
В строительных нормах и расчетах часто используется понятие «тепловое сопротивление материала». Это величина обратная теплопроводности. Если, на пример, теплопроводность пенопласта толщиной 10 см — 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.
Калькулятор расчёта толщины стены по теплопроводности
На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.
Окно расчёта калькулятора
В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.
Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе
Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.
Расчёт проводимости тепла всех прослоек стен
Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.