Irtishspb.ru

Строительство и Ремонт
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Химические реакции при получении цемента

Прочный бетон и химия — кратко для самоделкиных

Теория и химия бетона являются важными составляющими в получении самоделкиными необходимых знаний с целью осознанного применения на практике точных приемов и методов получения заданных свойств пластичного бетона.

С О Д Е Р Ж А Н И Е

  1. Точность в составе смеси и технологии — прочный пластичный бетон.
  2. Химия бетона — основа понятия процессов.
  3. Вода в цементной смеси.
  4. Химический состав цемента.
  5. Влияние температуры на скорость твердения и прочность бетона.

Общие сведения

Цемент относится к неорганическим веществам. Вяжущие свойства он приобретает при взаимодействии с водой или водными растворами солей. Отметим, что это единственный вяжущий материал, который повышает прочностные характеристики при влажных условиях. В этом его отличие от гипса, который твердеет на воздухе.

Сегодня большая часть многоэтажных зданий выстроена именно благодаря бетонным конструкциям и заливке цемента

Так, что же такое – цемент? Это измельченное минеральное сырье со специальными модифицирующими добавками. В зависимости от наполнителя, выделим следующие виды:

  • Портландцемент. Наиболее широко распространенный вид, включающий до 80% силиката кальция. Сфера применения не ограничена. Используется как при основных работах, так и при отделочных, поскольку возможно добавление красителей, повышающих декоративные свойства.
  • Глиноземистый. Отличительная черта – ускоренное твердение, что дает возможность применять на объектах, требующих срочной реставрации (ликвидация разрушений после аварий, пожаров, затоплений).
  • Магнезиальный. Главный элемент – оксид магния, добавляющий прочность, повышающий адгезионные свойства по отношению к древесине. К недостаткам относится повышенная вероятность коррозии, сужающая сферу применения.
  • Кислотоупорный. В качестве наполнителя выступает гидросиликат натрия, который затворяется жидким стеклом. Служит основой для кислотостойких бетонов, растворов. Актуален при обустройстве объектов химической отрасли.

В работах М.И. Хигеровича применялись три вида глин, характеристики которых указаны в табл. 1.

Таблица 1

Наименование фракций и содержание каждой из них в %

Глина № 1 нижнекотельническая .
Глина № 2 черемушинская .
Глина № 3 з-да им. Карпова .

Ниже, в табл. 2, приведены факторы удельной поверхности по фракциям и даны общие факторы поверхности примененных глин. Как известно, вычисление фактора поверхности основано на допущении, что поверхность двух порошков, полученных из равного объема веществ, обратно пропорциональна среднему диаметру их зерен. Для данного случая этот фактор есть сумма произведений, полученных умножением чисел, представляющих содержание данной фракции, на величину, обратную среднему диаметру частиц.

Таблица 2.

Частные факторы поверхности отдельных фракций

Общие факторы поверхн.

3 , глины № 2— 1025 кг/м 3 и глины № 3 — 963 кг/м 3 . Наряду с сырцовыми глинами, употреблявшимися в высушенном и размолотом состоянии, М.И. Хигерович пользовался также и глинами, обожженными при температуре 700° и после размолотыми в тонкий порошок, при содержании около 60% частиц, меньших 0,01 мм. В то время как наши работы в основном проводились на специально подобранных, в отношении гранулометрического состава, песках, М.И. Хигерович работал на природном весьма мелком песке с модулем крупности около 1,20; около 70% этого песка по весу составляли зерна размером от 0,15 до 0,30 мм. Следует отметить, что с этой точки зрения опыты ЦНИПСа в существенной мере дополнили проведенные нами исследования.
Основные выводы, полученные М.И. Хигеровичем в отношении свойств цементно-глиняных растворов и цитируемые нами в дальнейшем, полностью совпали с выводами, сделанными нами на основании исследований, приведенных здесь ранее.

Читайте так же:
Что такое активность цемента м400

Прочность растворов в кубиках

В этом отношении М.И. Хигерович на основании своих исследований приходит к нижеследующим выводам:
1) При соотношениях, не превосходящих одной весовой части глины к одной части цемента, величины временного сопротивления сжатию цементно-глиняных образцов во все сроки хранения (до одного года) оказались выше, чем величины временного сопротивления сжатию аналогичных цементно-известковых растворов. Это имело место как при сухом, так и при влажном хралени.
При увеличении добавки до двух весовых частей, по отношению к одной весовой части цемента, временное сопротивление цементно-глиняных растворов было лишь незначительно выше, нем в соответствующих цементно-известковых растворах; при дальнейшем же увеличении дозировки (до трех весовых частей добавки на одну часть цемента) цементно-глиняные растворы имели несколько меньшую прочность, чем цементно-известковые.
2) Введение в состав раствора по предложению проф. В.П. Некрасова комбинированных добавок (смеси глин с известью) оказалось более благоприятным, чем введение одной глины. Это открывает известные возможности некоторого сокращения расхода цемента при применении цементно-глино-известковых растворов, предложенных В.П. Некрасовым. Наилучшие результаты при этом давали те смеси, в которых соотношение извести и глины было как 25 :75 (см. табл. 3).

Таблица 3

Состав вяжущего по весу в %

Хранение в сухих условиях

Хранение во влажных условиях

времен. сопротивление сжатию в кг/см 2 через:

времен. сопротивление сжатию в кг/см 2 через:

Примечания:
1. Цемент марки 350—400.
2. Песок весьма мелкий с модулем крупности около 1,20.
3. Состав растворов по объему — 1 вяж : 3 песка.

Ocoбo М.И. Хигерович отмечает правильность соображений в отношении влияния гранулометрического состава раствора, на его прочность, подтвержденную во всех случаях его испытаниями, проведенными, как указывалось выше, на весьма мелких песках. Применяя предложенные нами деления гранулометрического состава раствора на три основных фракции, М.И. Хигерович отмечает большое удобство, возникающее при оценке гранулометрического состава этим методом.

Сравнение сырцовой глины с иными дисперсными добавками

М.И. Хигеровичем был использован в качестве добавки к строительным растворам, помимо глин в сыром и обожженном состоянии, также трепел добужского месторождения в сыром и обожженном виде.
На основании проведенных (сравнительных испытаний им были получены нижеследующие выводы в вопросе сравнительной оценки различных исследованных добавок:
1) Обжиг примененных глин до 700° не дал в дайнам случае улучшения свойств растворов, изготовленных с применением обожженной глины. При небольших расходах цемента применение сырцовой глины приводило к получению растворов более высокой прочности, чем в случаях применения той же глины, но в обожженном виде. При расходах же цемента свыше 300 кг/м 3 раствора прочность растворов с добавками как сырцовой, так и обожженной глин была примерно одинаковой.
Следует отметить, что глины, применявшиеся в работах М.И. Хигеровича, не имели значительных количеств загрязняющих органических примесей.
Сравнивая сырцовую глину как добавку с необожженным трепелом, по показателям прочности растворов можно было установить, что трепел не имеет преимущества перед сырцовой глиной в растворах с одинаковыми объемными дозировками. М.И. Хигерович отмечает, что в этих случаях несколько повышенная прочность цементно-глиняных растворов с сырцовой глиной объясняется более удачным гранулометрическим составом и большей плотностью таких цементно-глиняных растворов в сравнении с цементно-трепельными растворами и с растворами на обожженной глине.

Читайте так же:
Надышался цементной пылью болит голова

Водоудерживающая способность

Сравнительная водоудерживающая способность различных строительных растворов исследовалась М.И. Хигеровичем различными методами: измерением скорости водоотдачи при помещении раствора на керамические плитки, на специально изготовленные пористые плитки и на красный кирпич, а также с помощью центрофугирования раствора в лабораторной центрофуге.
В результате этих исследований пришли к заключению, что наиболее практически надежным и подходящим для производства способом оценки сравнительной водоудерживающей способности различных растворов явчяется численное определение этой способности при укладке раствора на кирпичах, как это проводилось и в наших исследованиях; при этом отметили, что цементно-глиняные растворы, при одинаковых расходах цемента и при одинаковой (по весу) дозировке извести и глины, имеют более высокую водоудерживающую способность, чем цементно-известковые растворы. В соответствии с этим, водоудерживающая способность нормальных цементно-глино-известковых растворов оказалась в опытах М.И. Хигеровича меньшей, чем цементно-глиняных. Следует отметить, что через 24 часа количество воды, теряемое различными растворами, примерно, одинаково.
Огромное же различие водоудерживающей способности растворов-наблюдалось в опытах М.И. Хигеровича в более короткие сроки, а именно — в первые 10—20 минут. В эти промежутки времени водоудерживающая способность цементно-глиняных растворов оказалась, примерно, такой же, как и чисто-известковых растворов.

Прочность сцепления

В соответствии с повышенной водоудерживающей способностью цементно-глиняных растворов М.И. Хигеровичем были получены наиболее высокие показатели для этих растворов и в отношении сцепления им c сухим красным кирпичом. В то время как общеупотребительные в практике составы растворов (типа 1 цем. : 1 изв. : 9 песка) при испытании с сухим кирпичам дали величины сцепления порядка 0,07—0,10 кг/см 2 , цементно-глиняные растворы при соотношении цемента к глине 1:1 по весу показали увеличение величины сцепления, примерно, в 10 раз, т.е. до 0,7 кг/см 2 . Составы из цемента, глины, извести и песка показали 1 1.2 — 2 раза худшие результаты, точно так же, как и цементно-трепельные растворы.
Таким образом, эти опыты также подтвердили полученные нами ранее результаты как о повышенной водоудерживающей способности цементно-глиняных растворов, так и о вытекающем отсюда лучшем сцеплении их с сухим кирпичом.

Изменения объема

Измерения объема растворов при твердении в различных условиях оценивались М.И. Хигеровичем пУтем измерения длины призм 25 X 25 X X 200 мм. Призмы, выполненные из различных растворов, хранились в эксикаторе над серной кислотой с относительной влажностью, в среднем не превышающей 0,7%, т.е. практически в сухом воздухе. Помимо этого часть образцов хранилась в эксикаторах над водой при относительной влажности среды около 100%. Цементно-известковые и цементно-глиняные растворы одинаковых дозировок дали в этих испытаниях весьма близкие величины изменений линейных размеров.
Наибольшие изменения линейных размеров для цементно-известковых растворов не превышали 1,18 мм/пог. м, а для цементноглиняных растворов — 1,30 мм/пог. м; чисто же известковые растворы имели меньшие величины усадки — в пределах 0,80 мм/noг. м.

Коэфициент размягчения

Коэфициенты размягчения для цементно-глиняных растворов в 6-месячном возрасте по опытам М.И. Хигеровича оказались не ниже 0,55, если коэфициент размягчения чисто-цементных растворов принять равным 100. Следует, однако, отметить, что при этих испытаниях коэфициенты размягчения цементно-глиняных растворов были получены, примерно, такими же, как и для цементно-известковых растворов, что по нашему мнению объясняется применением в данных опытах сравнительно тощих растворов (состав 1 ч. вящущего : 4 ч. песка), изготовленных на весьма мелком песке.

Читайте так же:
Цемент балаклея пц 400

Морозостойкость

В данных испытаниях, как указывалось выше, применялся весьма мелкий песок с модулем крупности около 1,20. В соответствии c этим прочность растворов вообще была крайне невелика, почему все испытанные растворы имели cравнительно невысокую морозостойкость.
М.И. Хигерович отмечает, что снижение прочности растворо в после замораживания было одинаково большим как цементно-известковых, так и у цементно-глиняных растворов, причем многие из них начали разрушаться уже при 6-кратном замораживании.

Влияние сухих условий хранения

Весьма интересные результаты были получены в рассматриваемых исследованиях при оценке вляния условий, в которых хранились различные растворы.
В частности, при сухом хранении, как правило, наблюдался серьезный рост во времени механической прочности всех смешанных цементных растворов независимо от характера примененной добавки.

Общая оценка свойств

а) На основании приведенных выше в краткой, форме результатов исследований М.И. Хигерович свойств подтверждает наши выводы о том, что правильно отобранная и правильно дозированная глина, благодаря своей полидисперности, может дать растворы с особо удачным гранулометрическим составом, что ведет к повышению прочности таких растворов.
Входя в некоторой степени в химическое взаимодействие с известной долей портландцемента при твердении, глина, по суждению М.И. Хигеровича, обусловливает возникновение новообразований, также играющих положительную роль в уплотнении раствора. При этом М.И. Хигерович солидаризируется c высказанным выше общим положением, что глина, находясь в тесном смешении с цементом, перестает существовать как таковая, с присущим ей рядом отрицательных свойств.
б) На основании полученных благоприятных показателей для цементно-глиняных растворов М.И. Хигерович приходит к заключению, что глина сырцовая как сама по себе, так, в некоторых случаях и в смеси с известью может быть введена в цементный раствор, употребляемый для каменной кладки.

При этом введение сырцовой глины взамен извести не ухудшает показателей прочности раствора, а в большинстве случаев заметно повышает таковые (в частности сравнительно с добавкой извести). Однако это (является верным лишь в том случае, когда количество глины не превышает отношений 1:1 или 1,5:1 по отношению к весу цемента, и кроме того, если смешанный раствор в той или иной степени приближается к намеченным нами выше оптимальным гранулометрическим составам для смесей с различной предельной крупностью зерен.
в) Смешанные растворы с сырцовой глиной по прочности и по характеру нарастания этой прочности по данным М.И. Хигеровича не уступают растворам с добавкой трепелов.
г) Применение сырцовой глины в большинстве случаев, видимо, благоприятнее, чем применение глины прокаленной.
д) Как видно из вышеизложенного, рассматриваемая работа в основном подтвердила все важнейшие выводы, сделанные ранее по отношению к цементно-глиняным растворам.

Состав производства и применение

Рассмотрим подробнее состав различных марок цемента, которые на сегодняшний день пользуются большой популярностью и их применение.

Как использовать готовый кладочный раствор марки М 100 можно узнать здесь из статьи.

Показатели прочности у этого материала составляют 400кг/см3. Такая марка цемента относится к самым популярным, ее применяют для проведения самых различных строительных работ. В ее составе могут быть различные модифицирующие добавки, процентное содержание которых может достигать 10 и 20%.

У этого цемента показатели прочности составляют 500 кг/см3. Для такого изделия характерна высокая скорость застывания и высокие прочностные показатели. Используют материал при возведении монолитных зданий, высоток, несущих конструкции, плит перекрытий. В его составе также могут присутствовать добавки – 10 и 20%.

Читайте так же:
Для чего служит цемент

Как использовать глиноземистый цемент по ГОСТ у 969 91 можно узнать из данной статьи.

По ГОСТу

Процесс получения общестроительных цементов должен осуществляться с учетом требований ГОСТ 31108-2003. Именно стандарт способен регулировать пропорции необходимых ингредиентов, входящих в состав сухой массы и технологию производства материала. Но в этот стандарт не входит материал специального назначения.

О том какой удельный вес цемента марки М 500 описано в данной статье.

Плавление сырья для получения шлака

Сырье для получения специального гидравлического шлака расплавляется в плавильной печи. Перед тем как поступить в плавильную печь сырье проходит через устройство предварительного нагрева, использующее отработанное тепло плавильной печи. Плавильная печь напоминает стекловаренную печь, однако при производстве цемента нагрев печи осуществляется за счет угля, пылевидного топлива, традиционного топлива или газа. Температура плавления – около 1450°C.

Охлаждение расплава и помол

На выходе из плавильной печи расплав охлаждается и подвергается грануляции. Данная система грануляции с водяным охлаждением позволяют обеспечить высокую реактивность шлака. Охлаждающая вода подается под большим давлением, что позволяет обеспечить быстрое охлаждение жидкой стекломассы и высокое содержание стекла в шлаке. На выходе из охлаждающей системы мы получаем слегка теплый и практически сухой шлак, готовый к использованию.

Быстрое охлаждение расплава позволяет получить шлак с очень высокой потенциальной реакционной способностью. Гранулят может храниться в течение длительного периода времени без потери данного свойства.

Охлажденный гранулированный шлак необходимо измельчить. После измельчения до порошкообразного состояния шлак готов к реакции при взаимодействии с водой.

Изготовление цемента

Для изготовления готового к использованию цемента смешиваются три компонента:

Компоненты дозируются и смешиваются в нужных пропорциях для получения цемента желаемого качества.

В качестве дополнительного материала может использоваться:

Активизатор добавляется в небольших количествах (от 2 до 5% от массы смеси). Количество и тип активизатора зависит от того, какую марку цемента вы хотите получить. Различное дозирование и выбор смешиваемых компонентов позволяет производить большое количество различных марок цемента на основе одних и тех же базовых компонентов.

В связи с высокой реакционной способностью приготовленного шлака , необходимы добавки, сдерживающие реакцию, такие, как зольная пыль или другое химически инертной вещество.

Голландская компания ASCEM BV разработала рецептуру, при которой смесь измельченного шлака и инертного вещества — золы – составляет 50/50.

Выше были приведены этапы производства цемента, характерные исключительно для производства шлакового цемента. Остальные этапы схожие с этапами производства традиционного портландцемента:

Схема производства бесклинкерного цемента на основе специального гидравлического шлака

Источник: по данным компании ASCEM BV

Полученный таким способом цемент обладает очень низкой температурой гидратации при производстве бетона, в связи с этим он может использоваться в производстве монолитного бетона, укладываемого в большие массивы. Другим важным свойством бетона является его высокая коррозиестойкость в агрессивной среде, такой как морская вода или сточные воды.

Ниже приведена сравнительная таблица свойств бесклинкерного цемента и традиционного портландцемента.

Сравнительная характеристика свойств бесклинкерного цемента и традиционного портландцемента.

Физико-химические свойства цемента/строительного раствораОбычный цемент, сопоставимый со свойствами портландцементаМодифицированный
удобоукладываемость++
температура гидратации+++
прочность при сжатии в возрасте 1 день+++
прочность при сжатии в возрасте 28 дней++
устойчивость к проникновению воды+
устойчивость к воздействию CO 2+
коррозиестойкость
сульфатостойкость+++++
устойчивость к воздействию серной кислоты+++
устойчивость к воздействию хлора++
Читайте так же:
Как рассчитать расход цемента для стяжки пола

0 одинаково
+ немного превосходит
++ превосходит
+++ намного превосходит

Источник: по данным компании ASCEM BV

Помимо высоких потребительских характеристик производство бесклинкерным способом оказывает меньшее воздействие на окружающую среду по сравнению с традиционными методами производства цемента.

При производстве цемента традиционным способом сырье обычно добывается из земли в больших количествах и трансформируется в цементирующий материал через обжиг, спекание или плавление и помол. Данные процессы являются чрезвычайно энергоемкими и оказывают негативное влияние на окружающую среду.

Помимо добычи сырья выброс в атмосферу отработанных газов и загрязнение атмосферы пылью также отрицательно сказываются на состоянии окружающей среды. Хотя производство бесклинкерного цемента не свободно от выделения в атмосферу газов и пыли, оно все же является более экологически чистым по сравнению с производством традиционного портландцемента.

Также в производстве бесклинкерного цемента используется вторичное сырье, такое как зольная пыль, что позволяет экономить природные ресурсы планеты.

Распространенные ошибки

При самостоятельном изготовлении бетонной смеси нередко допускаются ошибки, существенно снижающие ее качество. Самая распространенная из них – превышенное водоцементное отношение. Это связано с тем, что очень важно правильно уложить, а затем уплотнить бетонную смесь, что легче сделать при большей подвижности, которая достигается добавлением лишней воды. Но при этом существенно снижается качество материала – первый признак, выступление жидкости на поверхности после укладки.

Добиться того же эффекта без превышения количества воды можно при помощи пластификаторов.

Еще одной распространенной ошибкой является неправильный уход за бетоном. Процесс гидратации цемента должен проходить при постоянной температуре и максимальной влажности. Поэтому его требуется регулярно смачивать или укрывать полиэтиленом. В этом случае плотность и прочность получившегося бетона будет в несколько раз превышать аналогичный показатель монолита, высушенного без соблюдения этих условий за счет появления микрополостей и капилляров.

При этом нужно осознавать, что изменение свойств бетона не находится в линейной зависимости от внешних факторов и состава. При сниженном показателе водоцементного соотношения смесь быстро схватится в течение первых трех дней, но такой бетон будет иметь меньшую прочность, чем тот, который был приготовлен с повышенным соотношением воды и цемента, при условии, что соблюдались все технологические условия. Поэтому при изготовлении бетонных смесей подбирать варианты с оптимальным значением водоцементного отношения.

При высоких водоцементных отношениях пространство между двумя цементными зернами так велико, что оно не может быть заполнено при полной гидратации цемента. Остается избыточная вода, которая испаряется и оставляет пустоты (поры, капилляры).

Дистилляция (перегонка)

Дистилляция (перегонка) — это способ разделения жидких однородных смесей путём испарения жидкости с последующим охлаждением и конденсацией её паров. Данный способ основан на различии в температурах кипения компонентов смеси.

Пример. При нагревании жидкой однородной смеси сначала закипает вещество с наиболее низкой температурой кипения. Образующиеся пары конденсируются при охлаждении в другом сосуде. Когда этого вещества уже не останется в смеси, температура начнёт повышаться, и со временем закипает другой жидкий компонент:

Таким способом получают, к примеру, дистиллированную воду.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector