Irtishspb.ru

Строительство и Ремонт
19 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коррозия цементного камня коррозия выщелачивания

Коррозия бетона (железобетона, цемента): виды (сульфатная, биологическая), защита

Коррозия бетона – процесс разрушения элементов и конструкций из данного материала под воздействием на структуру монолита разнообразных внешних негативных факторов: агрессивных сред, физико-химических процессов, внутренних изменений. Изначально термин «коррозия» использовали исключительно касательно металлов, но потом само понятие стали применять и для других материалов, изделий.

Основное значение любой коррозии – это разрушение. И данному негативному процессу подвержены почти все строительные конструкции, на которые оказывается то или иное влияние. Наиболее разрушительны внешние факторы, но часто причиной коррозии становится и прохождение различных внутренних процессов.

Коррозия бетонных конструкций предполагает распад структуры монолита с потерей прочности и плотности, что приводит к утрате эксплуатационных свойств. Бетонные элементы разрушаются посредством расслоения, рассыпания цементного камня, так как обычно наполнители демонстрируют более высокую стойкость к агрессивным влияниям.

Экономические потери, связанные со снижением прочности и долговечности, ухудшением эксплуатационных характеристик сооружений, часто очень высоки, поэтому защита бетона от коррозии – актуальный вопрос во всех сферах, где используется данный материал. Благодаря превентивным мерам, своевременному выявлению факторов коррозии и изучению особенностей протеканий процессов удается значительно сократить финансовые потери и значительно повысить надежность, продлить срок службы разных конструкций, зданий, объектов.

Три вида коррозии бетона

Предполагалось, что при этом активный кремнезем добавки свяжет свободную известь цемента в более устойчивый монокальциевый гидросиликат:
SiО2 + Са(ОН) — СаО • Si02 • Н2О.

Однако оказалось, что эта реакция, интенсивно протекающая при повышенной температуре, без прогрева идет крайне медленно (месяцами и даже годами), а добавки достигают цели только при высокой активности кремнезема.

Аналогично действуют гранулированные доменные шлаки, которые вводятся в портландцемент в количестве 30—70% общего состава
Кислотостойкость этих цементов остается столь же низкой, как и без добавок, а сульфатостойкость пуццолановых портландцементов (при наличии 30—40% активных добавок) несколько повышается. Щелочестойкость этих цементов ниже, чем у портландцементов.
Рассматривая в целом деструктивные процессы, происходящие в цементном бетоне, можно их систематизировать исходя из механизма переноса действующих агентов, согласно классификации, предложенной В. М. Москвиным:

  1. коррозию I вида, при которой происходит вынос или выщелачивание из бетона относительно легко растворимых составляющих, в основном извести и щелочей;
  2. коррозию II вида, когда протекают обменные реакции: сюда относят действие кислот, щелочей и некоторых солей;
  3. коррозию III вида, которая наблюдается при внесении в бетон и накоплении там солей, особенно сульфатов; развиваемое при этом внутреннее давление как бы взрывает бетон с образованием характерных трещин.

В конкретных условиях один вид коррозии бетона может накладываться на другой или ему сопутствовать.

Способы защиты бетонных и железобетонных конструкций от коррозионного разрушения

Методы защиты бетона и железобетона от коррозионного разрушения делят на первичные и вторичные. К первым относятся:

  • Изначальная корректировка состава, цель которой – обеспечение высокой плотности и прочности бетона, хорошей водонепроницаемости.
  • Применение спецдобавок и вяжущих с особыми характеристиками. Применяемые добавки – водоудерживающие, пластифицирующие, стабилизирующие. Часто востребованы мылонафт, кремнийорганические жидкости, сульфатнодрожжевые бражки.
  • Разработка конструктивных решений, обеспечивающих защиту стальной арматуры.
Читайте так же:
Мешалка для цементного теста мтз

Целью вторичных защитных мероприятий является исключение прямых контактов поверхности бетонных и железобетонных конструкций с агрессивными средами. Такими способами являются:

  • Устройство оклеечной гидроизоляции. Этот вариант используется при контакте бетонной поверхности с влажным грунтом или при его периодическом смачивании жидкостями-электролитами.
  • Применение обмазочных гидроизоляционных материалов. Наиболее распространены мастики на базе различных смол.
  • Обработка поверхностей пропитывающими составами. Уплотняющие пропитки, повышающие водонепроницаемость поверхностного слоя бетона, часто наносят перед использованием лакокрасочных составов.
  • Применение акриловых и лакокрасочных составов – актуально при взаимодействии поверхности бетонного элемента с твердыми материалами или газосодержащими средами.

«Коррозия цементного камня и бетона»: лучшая презентация на эту тему находится здесь! Вам понравилось? Оцените материал! Загружена в 2019 году.

Коррозия цементного камня и бетона

Коррозия цементного камня и бетона – снижение прочностных характеристик материала под воздействием различных факторов вплоть до его разрушения. Коррозия цементного камня и бетона часто сопровождается изменениями геометрических характеристик изделия

Классификация процессов коррозии

Коррозия Под воздействием внешних факторов Автокоррозия Физическая Химическая Биологическая

Физическая коррозия цементного камня

Коррозия под воздействием повышенных температур R T > 150-200 500 > 900-1000 Причина – дегидратация кристаллогидратов цементного камня Меры борьбы – введение в состав цемента тонкоизмельченных добавок (шамот, туф, трепел, огнеупоры) в количестве 50 – 200 % от массы цемента

Коррозия под воздействием низких температур Причина – увеличение объема при замерзании воды в лед в порах цементного камня (9 %) – давление льда на стенки пор, гидростатическое давление (до 2 – 3 МПа) Меры борьбы: снижение пористости цементного камня; уменьшение среднего размера пор; использование воздухововлекающих добавок для создания демпфирующих (наполненных воздухом) пор диаметром 500 – 1000 мкм

Коррозия под воздействием попеременного увлажнения — высыхания Причина – возникновение капиллярного давления в частично заполненных водой порах цементного камня Меры борьбы: снижение пористости цементного камня; гидроизоляция поверхности цементного камня гидрофобизация поверхности пор цементного камня — коэффициент линейного набухания, мм/м — коэффициент линейной усадки, мм/м

Коррозия под воздействием кристаллизации солей Причина – давление растущих кристаллов на стенки пор Меры борьбы: снижение пористости цементного камня; гидроизоляция поверхности цементного камня гидрофобизация поверхности пор цементного камня Физическая коррозия цементного камня

Химическая коррозия цементного камня Коррозия выщелачивания под воздействием пресных вод Причина – растворение в воде Са(ОН)2 (растворимость – 1,3 г/л), вынос Са(ОН)2 из цементного камня. Все кристаллогидраты в цементном камне стабильны только при определенной концентрации ионов Ca2+и OH-. Изменение концентрации ионов Ca2+и OH- приводит к разрушению и перекристаллизации основных кристаллогидратов: (1,5 – 2,0)СaO·SiO2(0,8 – 1,5)СaO·SiO2 + Ca(OH)2 4CaO·Al2O3·(13-19)H2O 3CaO·Al2O3·6H2O + Ca(OH)2 Меры борьбы: снижение пористости цементного камня; гидроизоляция поверхности цементного камня перевод Ca(OH)2 в менее растворимые соединения снижение содержания Ca(OH)2 в составе гидратированного цемента

Читайте так же:
Производство цемента с конусные дробилка

Химическая коррозия цементного камня Коррозия под воздействием карбонатных вод, содержащих ионы СО32, НСО Причина – переход Са(ОН)2в цементном камне в СаСО3. Ca(OH)2 + Na2CO3 CaCO3 + 2NaOH Ca(OH)2 + Ca(HCO3)2 2CaCO3 + 2H2O Далее – по механизму действия коррозии под воздействием пресных вод Образование СаСО3: интенсифицирует удаление Са(ОН)2 из цементного камня; уплотняет структуру цементного камня, снижает его пористость Меры борьбы: снижение пористости цементного камня; гидроизоляция поверхности цементного камня перевод Ca(OH)2 в менее растворимые соединения снижение содержания Ca(OH)2 в составе гидратированного цемента

Химическая коррозия цементного камня Коррозия под воздействием магнезиальных вод, содержащих ионы Mg2+ Причина – разрушение Са(ОН)2в цементном камне вследствие образования менее растворимого соединения Mg(ОH)2 Ca(OH)2 + MgCl2 CaCl2 + Mg(OH)2 Далее – по механизму действия коррозии под воздействием пресных вод Меры борьбы: снижение пористости цементного камня; гидроизоляция поверхности цементного камня перевод Ca(OH)2 в менее растворимые соединения снижение содержания Ca(OH)2 в составе гидратированного цемента

Химическая коррозия цементного камня Коррозия под воздействием кислых вод, содержащих ион Н+ Причина – разрушение кристаллогидратов в цементном камне ГСК + Н+ Si(OH)4 + Ca2+ ГАК + H+  Al(OH)3 (или Al3+) + Ca2+ Ca(OH)2 + H+  Ca2+ Меры борьбы: снижение пористостии проницаемости цементного камня; гидроизоляция поверхности цементного камня

Химическая коррозия цементного камня Коррозия под воздействием кислых газов (SO2, NOx, H2S, CO2) Причина – образование в цементном камне кислот при взаимодействии с водой, далее — по механизму действия кислотной коррозии ГСК + Н+ Si(OH)4 + Ca2+ ГАК + H+  Al(OH)3 (или Al3+) + Ca2+ Ca(OH)2 + H+  Ca2+ Меры борьбы: снижение пористостии проницаемости цементного камня; гидроизоляция поверхности цементного камня

Химическая коррозия цементного камня Сульфатная коррозия под воздействием вод, содержащих ионы SO42  Причина – образованиев цементном камне эттрингитта со значительным (более чем в 2 раза) увеличением объема твердых кристаллических фаз Ca(OH)2 + SO42 + 2H2O  CaSO42H2O + 2OH 3CaSO42H2O + 3CaOAl2O36H2O + 20H2O  3CaOAl2O33CaSO432H2O Эттрингит – «цементная бацилла» Расчет объемных изменений при образовании эттрингита Один моль эттрингита образуется в результате реакции между одним молем 3CaOAl2O36H2Oи тремя молями CaSO42H2O, образовавшимися из трех молей Ca(OH)2 и занимает их первоначальный объем. Vмолярн. = Мм /  Vнач. = 3·(74 / 2,24) + (378 / 2,52) = 249,1 см3Vконечн. = 1254 / 1,77 = 708,5 см3 Изменение объема = Vконечн. / Vнач. = 708,5 / 249,1 = 2,84

Читайте так же:
Заливка цементной стяжки кровли

Химическая коррозия цементного камня Сульфатно – магнезиальная коррозия под воздействием вод, содержащих ионы SO42  и Mg2+ Меры борьбы: снижение пористости цементного камня; гидроизоляция поверхности цементного камня снижение содержания Ca(OH)2 в составе гидратированного цемента снижение содержания гидроалюминатов в составе гидратированного цемента – усложняется и ускоряется коррозией под действием магнезиальных вод

Химическая коррозия цементного камня Общие меры повышения коррозионной стойкости цементного камня: снижение содержания C3S в цементе; связывание Са(ОН)2 в цементном камне в менее растворимые соединения с помощью активных кремнеземсодержащих минеральных добавок; снижение содержания С3А в цементе; снижение пористости и проницаемости цементного камня; гидроизоляция поверхности затвердевшего цементного камня; гидрофобизация (поверхностнаая и объемная) цементного камня «Слабые звенья» цементного камня: Са(ОН)2 – образуется при гидратации С3S ГАК– образуются при гидратации С3А

Биологическая коррозия цементного камня Биологическая коррозия – повреждения бетона, вызванные продуктами жизнедеятельности живых организмов (бактерии, грибы, мхи, лишайники и микроорганизмы), поселяющихся на поверхности строительных конструкций. Бактерии, грибы, водоросли способны развиваться на поверхности бетона и проникать в капиллярно-пористую структуру материала. Продукты их метаболизма (органические кислоты и щелочи) разрушают компоненты цементного камня (особенно в условиях высокой влажности). Меры борьбы: снижение пористости цементного камня; гидроизоляция поверхности цементного камня; гидрофобизация поверхности пор цементного камня; введение в состав цемента биоцидных добавок

Коррозия цементного камня вследствие образования вторичного эттрингита Причина – предварительное твердение цементов: при повышенных температурах (выше температуры стабильности эттрингита); при недостатке воды в системе твердеющего цемента Меры борьбы: тепловая обработка твердеющего цемента при температурах не более 80 оС; предотвращение потери влаги из цементного раствора; снижение скорости массопереноса в системе твердеющего цемента (уменьшение пористости, снижение среднего размера пор, объемная гидрофобизациия пор)

Коррозия цементного камня и бетона вследствие реакций активного заполнителя со щелочами Причина – взаимодействие щелочей цемента (Na2O, K2O) с активным заполнителем в бетоне Опал Халцедон Кристобалит

Коррозия цементного камня и бетона вследствие реакций активного заполнителя со щелочами Механизм коррозии K2SO4 (Na2SO4) + Ca(OH)2 = CaSO4·2H2O + 2 KOH (NaOH) SiO2 + 2 KOH (NaOH) + n H2O = K2SiO3·nH2O (Na2SiO3·nH2O) K2SiO3·nH2O (Na2SiO3·nH2O) + Ca(OH)2 = CaSiO3·nH2O + 2 KOH (NaOH) Высокодисперсный гидросиликатный гель при увлажнении заметно увеличивается в объеме, при высыхании – уменьшается в объеме, что приводит к разрушению контактной зоны и ослабляет структуру материала в целом Меры борьбы: ограничение содержания R2O в цементе использование нереакционного заполнителя в бетоне введение в цемент высокодисперсных активных минеральных добавок

Коррозия железобетона под воздействием хлоридов Образование защитной пленки на поверхности арматуры при высоких значениях рН среды: 2Fe2+ + 4OH + ½O2 2FeO(OH) + H2O 2FeO(OH)  Fe2O3 + H2O Коррозия арматуры под воздействием NaClи О2 воздуха: Меры борьбы: пассивация арматуры; использование оцинкованной арматуры снижение проницаемости цементного камня и бетона

Читайте так же:
Технологический процесс для производства цемента

Коррозия бетона

Бетон также подвергается коррозийному разъеданию. Происходит распад его структуры под воздействием атмосферных осадков, грунтовых вод, воды водоемов и других вредных влияний. Если в конструкции используется армированный бетон, то к перечисленным факторам можно добавить еще и коррозийные процессы в самой арматуре.

В процессе коррозии бетон теряет свою плотность, прочность и, как итог, утрачивает эксплуатационные характеристики. Первым рассыпается и расслаивается цементный камень. Заполнители более стойкие к воздействию агрессивной среды.

Виды коррозии бетона

Классификация типов коррозии бетона зависит от того, какие примеси содержатся во внешней среде.

1 тип – цементный камень разрушается из-за того, что происходит выщелачивание гидроксида кальция. Эта составляющая обладает свойством быстро растворяться и также быстро вымываться из бетона, что и приводит к его коррозии. Гидроксид кальция может как присутствовать в смеси изначально, в момент ее формовки, так и образовываться при попадании на конструкцию воды, содержащей вредные примеси.

2 тип – на распад цементного камня действуют кислоты. Это химическая коррозия. Из конструкции вымываются легкорастворимые известковые продукты или происходит обратный процесс. Как результат, конструкция утрачивает прочностные показатели, превращаясь в рыхлую слабую массу. К этому типу относится и щелочная коррозия, которая может быть вызвана избытком противоморозных добавок, вносимых в бетонную смесь при ее формировании.

3 тип – это образование нерастворимых в воде соединений кальция. Они получаются в результате действия кислот. Постепенно заполняя поры бетона, СаСО₂ или CaSO₄ увеличивают его объем, что и вызывает разрушение конструкции.

Наиболее частым бывает воздействие сульфатной коррозии (CaSO₄). Но точно определить, что повлияло на разрушение бетона в конкретном сооружении, бывает достаточно сложно. Поэтому данная классификация носит условный характер. В ней названы наиболее вероятные факторы воздействия.

На практике коррозионный процесс может быть вызван совокупностью различных факторов. При этом параллельно могут протекать несколько категорий разрушений.

Кроме того, нельзя забывать и о том, что целостность конструкции во многом зависит от наличия или отсутствия в ней арматуры, которая также может подвергаться коррозии.

Способы защиты бетона от коррозии

Поскольку коррозийные процессы могут быть вызваны комплексом причин, то и способы защиты от них также разные.

Принято выделять два вида мер:

  • первичная защита от коррозии;
  • вторичная защита.

В первом случае подбираются материалы, изменяется состав или структура используемых строительных материалов на этапе изготовления конструкции или до начала процесса.

При вторичной защите ограничивают или исключают воздействие окружающей среды на конструкцию после ее изготовления.

Вторичная защита достигается путем использования лакокрасочных, мастичных материалов или пропиток, имеющих уплотняющие свойства. Они наносятся на уже готовые сооружения из бетона.

Читайте так же:
Облицовка дома с белым цементом

Что приводит к ржавлению арматурного каркаса

Существует несколько причин появления ржавчины на металле внутри бетонной массы. И далеко не всегда это внешние воздействия.

  • Внутреннюю коррозию может вызвать наличие большого количества агрессивных компонентов в воде, которой затворяют бетонную смесь. Кроме того, для создания армированного бетона нельзя использовать состав, содержащий более 2% (от массы цемента) хлористого кальция. Поскольку этот элемент значительно ускоряет коррозию арматуры в бетоне при эксплуатации в любой среде.
  • Немаловажное значение имеет плотность укладки бетонной смеси. Дело в том, наличие большого количества пор, пустот, раковин дает возможность влаге и воздуху проникать внутрь изделия, к арматурному каркасу. В результате на различных участка металлического контура возникают разные электрические потенциалы, что приводит к электрохимической коррозии.
  • Понятие физическая коррозия связано с разрушением бетона в результате его попеременного замораживания и оттаивания. Избежать этой неприятности можно, создав благоприятные условия во время набора бетоном прочности до заданной величины.

Чтобы правильно оценить ситуацию и принять меры для ее исправления, необходимо понять уровень угрозы. Для определения степени коррозии арматуры и бетона применяются физико-химические способы:

  • Изучение состава компонентов, вновь образованных в бетонной массе под воздействием агрессивных веществ. Исследования выполняются в лаборатории при помощи дифференциально-термической и рентгено-структурной диагностики на специально отобранных образцах.
  • Проведение визуального осмотра измененной структуры бетона в конструкции, используя увеличительную лупу. Этот способ позволяет выявить многие поверхностные дефекты.
  • Мощные микроскопы помогают обнаружить характер расположения и соединения элементов цементного камня с зернами заполнителей. А также состояние контакта бетона с арматурой, габариты и направление распространения трещин.

Для определения прочностных характеристик эксплуатируемых конструкций из бетона и железобетона применяются неразрушающие методы контроля в соответствии с рекомендациями и требованиями ГОСТ 18105-86.

Воздействие на цементный камень агрессивных веществ

Данный вид коррозии возникает при воздействии на цементный камень различных агрессивных веществ, соприкасаясь с которыми образуются 2 типа соединений:

  1. Соли
  2. Аморфные массы

Образующиеся соли являются легкорастворимыми и растворяются (вымываются) водой. Аморфные массы, практически не обладают ни какими связующими свойствами (кислотная коррозия).

Кислотная коррозия появляется когда воздействует любая из кислот, кроме поликрениевой и кремне-фтористо-водородной кислоты. Эти кислоты, при взаимодействии с гидроксидом кальция, создают легкорастворимые соли CaC12 в том числе, которые постоянно увеличивают свой размер CaSO4-2H2O:

Са(ОН)2 + 2НС1 = СаС12 + 2Н2О Са(ОН)2 + H2SO4 = CaSO4.2H2O

При воздействии таких кислот, начинают разрушаться: гидроалюминаты, гидросиликаты и гидроферриты, создают легкорастворимые соли и другие дополнительные аморфные массы.

Защита от слабых кислотных сред pH =4-6, осуществляется с помощью специального кислотостойкого материала (покрывают пленкой, окрашивают итд). Если кислотные коррозии являются сильными, ph

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector