Расчет устойчивости откосов грунтовых плотин
Технология укладки геомембраны — пошаговая инструкция
Материал подготовил
главный инженер
ГК GeoSM Некоркин В.В.
Геомембрана относится к современным геосинтетическим материалам, широко использующимся в сфере инжиниринга окружающей среды и геотехники. Материал отличается высокими гидроизоляционными качествами, поэтому обладает обширной областью применения.
На рынке предлагается геомембрана оптом и в розницу, поэтому у каждого покупателя есть возможность заказа партии материала в соответствии со своими потребностями.
Разновидности подпорных стенок
Подпорную стенку сооружают в случаях, когда откос грунта или насыпи превышает предельную величину. Они подразделяются по высоте, конструкции и материалу.
- низкие – перепад планировочных отметок менее 10 м;
- средние – перепад составляет от 10 до 20 м;
- высокие – при перепаде высот более 20 м.
- массивные;
- тонкостенные;
- анкерные.
1. Гибкая подпорка с анкерным прекплением. 2. Массивные подпорные стенки: а — с вертикальными гранями; b — с вертикальной лицевой и наклонной тыльной гранью; c — с наклонной лицевой и вертикальной тыльной гранью; d — с двумя наклонными в сторону насыпи гранями; e — со ступенчатой тыльной гранью; f — с ломаной тыльной гранью. 3. Тонкостенные подпорные стенки: a — уголковая консольная; b — уголковая консольная с зубом; c — уголковая контрфорсная; d — уголковая с анкерными тягами
- железобетонные;
- бетонные;
- кирпичные;
- каменные;
- деревянные;
- габионные.
Кирпичная подпорная стенка
Каменная подпорная стенка
Деревянная подпорная стенка
Габионная подпорная стенка
Массивные подпорные стенки обеспечивают устойчивость от сдвига и опрокидывания собственным весом. В тонкостенных кроме собственного веса учитывается вес грунта, который включается в работу в соответствии с конструкцией стенки.
Подпорные стенки бывают монолитными, сборными и сборно-монолитными. Конструктивно тонкостенные подпорные сооружения по форме подразделяются на:
- уголковые консольные;
- уголковые анкерные;
- контрфорсные.
Анкерные подпорные стенки применяются при высоких перепадах планировочных отметок. Каждый грунт имеет свои физико-механические свойства. Например, если для него существует понятие призма обрушения, то анкерная плита должна располагаться за её пределами.
Гибкие подпорные конструкции могу иметь небольшой прогиб и смещение, которые ограничиваются нормами. Если в основании подпорного сооружения имеются слабые грунты, применяются для стенок свайные фундаменты.
Размеры подпорных стенок принимаются в ходе расчёта, в котором учитывается:
- вес стенки;
- давление грунта;
- нагрузки, находящиеся в пределах призмы обрушения;
- нагрузки на лицевую часть стенки и другие возможные силы, возникающие в каждом конкретном случае.
Подпорная конструкция рассчитывается на несущую способность грунта и самой стенки, устойчивость против сдвига. Для сложных условий строительства расчёт учитывает все дополнительные нагрузки.
В случае водонасыщенных грунтов делается дренаж. При этом уменьшается нагрузка от грунта на стенку. Иногда грунт содержит агрессивные составляющие по отношению к бетону или металлу. В этом случае возведение сооружения делается с учётом защиты конструкций от коррозии.
Высота подпорной стенки напрямую зависит от высоты перепада планировки. Для массивных сооружений размер подошвы можно принять 0,5–0,7 высоты стенки. Наименьший размер сечений стен допускается для:
- бутобетонных — 600 мм;
- бетонных — 400 мм;
- железобетонных — 100 мм.
При определении глубины заложения подпорных стенок учитываются все требования, как к фундаментам, но не менее 600 мм для нескальных грунтов и 300 мм для скальных.
Обустройство системы распорок в котловане
В некоторых случаях, особенно если котлован глубокий и вырыт в ненадежном грунте, шпунтовое ограждение оказывается непрочным. Оно не способно выдержать давление. Тогда используют два способа укрепления ограды.
Первым из них является распорная система:
- По всей длине рва монтируется обвязка из металлического проката. Этот пояс равномерно распределяет давящее воздействие на стенки геодезического объекта.
- В обвязку упираются распоры. Они располагаются поверху противоположных стен и у дна котлована.
- Установка креплений откосов котлована производится исходя из расчетов, описанных в плане производства работ (ППР).
Однако система распорок значительно сужает пространство внутри рва. Сильно нагруженные конструкции мешают работать строителям. Из-за этого падает производительность труда, и удлиняются сроки ввода здания в строй. Поэтому распорная система укрепления стенок выемки часто заменяется анкерным аналогом.
Обеспечение безопасности котлована
Строительные котлованы и траншеи глубиной более 1,25 м при выемке грунта должны укрепляться против обрушения или последующего сползания земли.
С каждой стороны котлована надо создавать защитные полосы шириной не менее 60 см, которые должны быть свободными, или надо следить за тем, чтобы вынутый грунт или верхний грунт не могли скатиться обратно в котлован.
Кроме того, в зависимости от градации строительного грунта на землю или скальный грунт устанавливается угол откоса для строительных котлованов. Он меньше, чем угол естественного откоса.
При глубине котлована до 1,75 м при устойчивом грунте на высоте 1,25 м над уровнем дна котлована должен начинаться откос под углом 45°.
В грунтах, связность которых может ухудшиться при высыхании, проникновении воды, при морозе или за счет образования скользких поверхностей, необходимо устраивать более пологие откосы или откосы с отступами (бермы).
Ступени в ступенчатых стенах строительных котлованов должны быть шириной не менее 1,50 м; при этом глубина котлована не должна быть больше 3,00 м. Они также должны иметь откосы.
При глубине котлованов свыше 5,00 м или при отклонениях от углов откоса необходимо рассчитать их устойчивость. Если предполагаются дополнительные нагрузки и динамические воздействия или приходится считаться с сильным вымыванием откосных стен котлована, то поверхности откосов необходимо укрывать пленкой или укреплять нанесением тонкого слоя бетона (торкретирование).
В котлованах глубиной более 1,25 м необходимо иметь стремянки, выступающие не менее чем на 1,00 м над уровнем земли. При глубоких котлованах стремянки необходимо заменять лестничными маршами.
Так как устройство откосов требует больших площадей на площадке, то стенки котлована могут укрепляться также и обстройкой. Это необходимо также при влагонасыщенных или равнозернистых грунтах.
Обстройка — это вертикально стоящая стена из балок или стальных ригелей, которые обложены по всей плоскости полнокантными брусьями толщиной минимум 5 см. Этим предотвращается обрушение стены котлована.
Для предотвращения обрушения стенок котлованов брусья обстройки должны выходить не менее чем на 5 см за пределы стенки котлована. Брусья должны всей своей плоскостью подпирать землю стенки.
Обстройка с горизонтальной опалубкой (укрепление брусьями) должна устраиваться постоянно вслед за отрывкой котлована. Эти работы следует начинать при глубине котлована 1,25 м.
При обстройке между рамными или установленными в буровые скважины стальными стойками (берлинская обстройка) брусья устанавливаются горизонтально между фланцами вертикальных стальных стоек.
Брусья должны быть такими длинными, чтобы глубина опорной части соответствовала не менее четверти ширины фланца. Брусья необходимо закрепить досками и клиньями, причем клинья следует в свою очередь закрепить досками от смешения.
При обстройке вертикальной опалубкой в узких котлованах вертикально стоящие брусья своими нижними торцами вбиваются в подошву котлована и раскрепляются горизонтальными деревянными стяжками на расстоянии 1,75 м друг от друга.
Деревянные стяжки должны иметь сечение минимум 12×16 см. Закрепление стенок обстройкой должно вестись по мере отрывки котлована. Предписания по устройству этого типа обстройки соответствуют предписаниям для обстройки горизонтальной опалубкой.
Если укрепление котлованов производится шпунтовыми стенами, то перед началом земляных работ шпунтовые профили устанавливаются в землю. Шпунтовые профили или шпунтовые брусья на длинных сторонах имеют так называемые замки, которые служат направляющими при вбивании шпунта.
Вследствие того, что шпунт может воспринимать большие растягивающие и сжимающие нагрузки, раскрепление и придание жесткости шпунтовым стенам необходимо устраивать на больших расстояниях в продольном направлении, чем в других случаях обстройки.
Шпунтовые стены имеют то преимущество, что они в значительной степени водонепроницаемы. Поэтому они применяются для укрепления стенок котлованов при гидротехнических работах.
Глубокие котлованы рядом с дорогами с интенсивным движением и с застроенными участками укрепляются стенами из буронабивных свай. Для этого в земле бурятся скважины. В них вставляется арматура. Потом их бетонируют.
Сваи могут стоять непосредственно рядом друг с другом или на некоторых расстояниях. При этом промежутки между ними заполняются бетонными стенами.
Вследствие веса сооружения в фундаментах возникают напряжения сжатия, которые должны быть распределены по грунту основания как можно более равномерно. Упрощенно принимают, что давление от фундамента на землю распространяется под углом в 45°.
В действительности, однако, давление распространяется в форме луковицы под основанием сооружения. При этом получаются линии равных сжимающих напряжений, называемые изобарами.
Распределение этих изобар называется также «луковицей давлений». По распределению изобар видно, что сжимающие напряжения под подошвой самые большие.
В случае точечного фундамента напряжения уже на глубине, равной удвоенной ширине подошвы фундамента, почти равны нулю. В случае ленточных фундаментов это происходит на глубине, равной утроенной ширине подошвы.
Изобары различных фундаментов не должны пересекаться, так как в районе пересечения происходит увеличение напряжений. Это может привести к осадкам здания.
Осадки зданий и разрушение грунта
Грунт как строительное основание должен воспринимать силы и нагрузки от сооружения. При этом строительное основание под нагрузкой может сжиматься и деформироваться. Здание осаживается равномерно на несколько миллиметров.
Это называется осадкой. Равномерные осадки обычно не угрожают зданию, и в нем не возникает осадочных разрушений.
Однако если напряжения от двух рядом стоящих фундаментов пересекаются, то есть накладываются друг на друга, или под зданием имеет место неравномерное строение слоев грунта основания, то это может иметь следствием неравномерные осадки.
При этом здание может наклониться в сторону или могут возникнуть осадочные трещины. Могут даже возникнуть строительные повреждения, которые сделают невозможным дальнейшее использование здания или сооружения.
Связанные и несвязанные грунты имеют различное поведение в смысле осадок во времени, которое можно определить с помощью испытания грунта на сжатие.
При нагружении связанных грунтов вода находящаяся между отдельными зернами или пластинками грунта (вода в порах), будет выдавливаться. Вытеснение воды из пор происходит очень долго.
Поэтому осадки в связанных грунтах могут продолжаться в течение многих лет. Размер осадок в зависимости от количества воды в порах может быть очень большим. Так, например, Хольстенские ворота в Любеке, построенные в 1477 г. за прошедшие столетия осели на 1,50 м.
При нагружении несвязанного грунта большие осадки произойти не могут. Зерна таких грунтов расположены очень тесно относительно друг друга. Таким образом, нагрузка передается от зерна к зерну и распределяется между ними.
Однако каркас из зерен (гранул) тем не менее может более тесно сжиматься под нагрузкой. Это происходит уже при нагружении грунта. Для того чтобы избежать опасности осадок в связанных грунтах, на практике связанный грунт на определенную глубину заменяется несвязанным грунтом (замена грунта).
Если несущая способность грунта будет превышена,фундамент начинает скользить по шву скольжения вбок и сооружение резко осаживается или разрушается.
Поведение грунта при морозе (промерзание)
Мокрый связанный грунт особенно чувствителен к морозу. Мороз проникает в зависимости от климатических условий примерно от 0,80 до 1,20 м в глубину грунта. До этой глубины, глубины промерзания, вода, находящаяся в грунте, может замерзать.
При этом объем воды увеличивается примерно на 10%. Так как в промокшем пространстве в порах связанного грунта нет места для увеличения объема, то грунт начинает подниматься кверху.
При этом говорят о морозном пучении грунта. Ледяные линзы возникают потому, что вследствие капиллярного действия влага поднимается из незамерзших слоев грунта и замерзает при попадании в зону мороза.
Эти морозные выпучивания обусловлены ледяными линзами, которые в зависимости от влажности и капиллярности грунта могут быть различной величины и могут приводить к значительным морозным разрушениям.
Морозные разрушения в большинстве случаев проявляются только после оттаивания грунта, например как выпучивание садовых стен, как трещины в строительных конструкциях или как повреждения дорожного покрытия.
Водоудержание
Возведение сооружений требует, как правило, сухих котлованов. Попадание поверхностной воды (верховодки), воды, текущей по водоупорному слою, или грунтовых вод в котлован вызывает опасность обрушения откосов и стен котлована.
Для того чтобы эту опасность исключить, необходимо предотвратить попадание воды в котлован или, соответственно, удалить воду, попавшую туда. Все мероприятия для поддержания котлована в сухом состоянии называют водоудержанием.
При удалении воды из котлованов или траншей различают открытое водоудержание и водопонижение. При открытом водоудержании попадающая в котлован поверхностная вода или вода в слоях грунта собирается в углубленной части котлована, так называемое насосное болото, вне периметра строящегося здания и откачивается из котлована.
Поэтому дно котлована надо спланировать таким образом, чтобы к этому месту проходили уклоны. По краям котлована могут быть устроены дренажные трубы или канавы, в которых должна собираться вода из слоев грунта или просачивающаяся вода, выходящая из откосов, которая затем должна отводиться к насосному болоту.
С помощью этих мероприятий предотвращается заболачивание дна котлована и обеспечивается нормальное проведение работ по устройству фундаментов. Открытое водоудержание возможно также тогда, когда дно котлована в незначительной степени лежит ниже уровня грунтовых вод.
Если подошва котлована лежит глубже существующего уровня грунтовых вод, то в случае грунтов с определенным водопроницанием с началом земляных работ требуется понижение уровня грунтовых вод.
С помощью всасывающих труб, которые расставляются на небольших расстояниях по площади котлована и объединяются кольцевым трубопроводом, связанным с откачивающим насосом, уровень грунтовых вод понижается и удерживается ниже уровня дна котлована по меньшей мере на 50 см.
Таким образом, котлован может поддерживаться сухим для проведения фундаментных работ. Однако необходимо следить за тем, чтобы водопонижение не привело к осадкам сооружения, не повлияло на водоснабжение и не привело к изменениям окружающей среды.
Противооползневые геотехнические методы
Комплексный геотехнический подход, который должен применяться для укрепления склонов упоминался в описании выше; здесь дается обзор и основных способов и методов защиты от оползней которые закладываются на этапе геотехнического проектирования.
Планировка склона
Устойчивость опасного склона может быть обеспечена срезкой вверху, т. е. уменьшением веса активной части оползня и пригрузкой в его основании. Это особенно важно для склонов, масса пород которых не уменьшается вследствие поднятия. Разработка и удаление грунтов из выемок осуществляются мощными машинами, при этом необходимо соблюдать осторожность, чтобы не нарушить устойчивость склона над оползнем при его планировке. Когда в подошве склона создается контрбанкет, рекомендуется обеспечить дренирование подстилающих слоев.
Дренирование оползня
Важным фактором, контролирующим движения масс на склонах, является гидростатическое давление, которое действует как боковое давление в порах и трещинах пород и как поднимающая сила, действующая на подошву водонепроницаемых или малопроницаемых пластов.
Необходимо обеспечить отвод дождевых вод и водотоков от участка оползня наикратчайшим путем, избегая протяженных горизонтальных осушительных канав. В тех местах, где имеется возможность инфильтрации воды из канала в склон, необходимо проложить трубы. Вся дренажная система должна постоянно поддерживаться в рабочем состоянии, особенно в зимние месяцы.
Подземный дренаж представляет одну из самых необходимых мер по предотвращению оползней. Если оползшие массы имеют мощность несколько метров, то дренажные траншеи углубляются механизмами и заполняются проницаемым материалом. Воды из глубоких частей массива дренируются буровыми скважинами, чаще пологонаклонными, глубины которых достигают 200 м. В северной Чехии была пробурена дренажная скважина глубиной 231 м, которая прошла в основном угольные пласты. Недостаток буровых скважин как дренажной системы состоит в том, что в разжиженных песках их редко можно пройти более чем на 60 м, и они часто заплывают. Большое преимущество дает сочетание горизонтальных и вертикальных дренажных скважин.
В равнинных областях горизонтальные скважины бурятся из выемок или из шурфов (шахт). В песчаных грунтах обычно используются колодцы, оборудованные соответствующими фильтрами и насосами. На действующих оползнях колодцы имеют меньший срок службы, чем горизонтальные дренажные скважины.
Закрепление оползневого склона
Часто рельеф склона не позволяет существенно уменьшить его средний угол и проложить дренаж. Если это и оказывается возможным, то нередко недостаточно для стабилизации склона. В этих случаях возводятся подпорные стенки, предназначенные для обеспечения равновесия сил. Геотехнические расчеты подпорных стенок выполняются очень тщательно. Вскрытие котлована для длинной поддерживающей стены часто активизирует движение оползня. Преимуществом обладают подпорные стенки в виде свай. Глубоко забитые сваи имеют низкое сопротивление сдвиговым напряжениям, и их удерживающую способность можно увеличить путем закрепления их верха анкерами, установленными в несмещенных породах.
Если грунтовые воды не дренированы выше подпорной стенки, то в период снеготаяния водонасыщенные поверхностные слои начнут оползать вниз по склону, часто перетекая через стенку. Следовательно, стабилизация неустойчивого склона без его дренирования не может считаться достаточной. Все вышеперечисленные противооползневые мероприятия должны сопровождаться покрытием склона проницаемым материалом для предохранения замерзания приповерхностного слоя.
Автомобильная дорога на подмываемом берегу реки Лиммат около Цюриха (Швейцария) должна была прокладываться над существующим транспортным путем. На мергелях, глинах и песчаниках нижней молассы сформировался обширный оползень, датируемый последней вюрмской межледниковой стадией. Детальные исследования показали, что любое воздействие на оползень активизирует локальные подвижки, если не принять тщательные меры предосторожности. Поддержание откосов выемки дороги следовало поэтому осуществить с помощью свай, закрепленных в несмещенных породах. Поскольку поступление подземных вод из песчаников и зоны разлома было одним из факторов, приведших к образованию оползней на склоне, водовмещающие пласты коренных пород были дренированы горизонтальными скважинами и колодцами. Опасный участок автомобильной дороги пересекался мостом. Сваи для основания опор моста были забиты в коренные породы. Выемки нижней автомагистрали также были закреплены сваями, а верхняя часть откоса выемки была облегчена с помощью каркасного сооружения из железобетона.
Для предотвращения оползания пород или для прекращения оползневой подвижки в определенных геологических и геотехнических условиях применяются подпорные стенки, сваи, контрбанкеты, контрфорсные столбы и др. Все эти геотехнические сооружения специально рассчитываются с учетом всех сдвигающих сил и сил удерживающих.
Основным условием при возведении подпорных сооружений является заложение их на несмещаемом фундаменте. В большинстве случаев в борьбе с оползнями применяются комплексные мероприятия: вместе с подпорными сооружениями закладываются дренажные галереи, производится уполаживающая срезка и планировка склона, устраивается контрбанкет и др.
Не исключены в геотехнической практике строительства крупных сооружений и такие противооползневые мероприятия, как полное удаление оползневых масс, например, с помощью гидромониторов.
Часто в качестве защиты от оползня, применяется цементация. Эта мера борьбы с оползнями может быть применена только в скальных трещиноватых породах при наличии пластовых трещин с уклоном к подошве оползня, частично заполненных глиной и являющихся плоскостями скольжения. Надо, однако, иметь в виду, что способ этот представляет и определенную опасность, связанную с утяжелением пород, и поэтому должен применяться с необходимыми мерами предосторожности.
Наша организация предлагает комплексные обследования оползнеопасных склонов и оползней с целью оценки их устойчивости и разработке мероприятий по предупреждению развития, предотвращению активизации оползневого процесса, а также разработки комплексного проекта инженерной защиты.
Более полную информацию по разработке геотехнического проекта инженерной защиты от оползней, по выполнению геотехнических расчетов вы можете получить позвонив нам по телефону + 7 (499) 350-23-58, или оставив заявку по форме или по электронной почте.
Намывной грунт
Намывной техногенный грунт создается с помощью гидромеханизации с использованием системы трубопроводов. В процессе строительства специалисты выполняют организованные и неорганизованные намывы. Первые необходимы для инженерно-строительных целей. Их сооружают уже с заранее заданными свойствами. С помощью таких сооружений намывают плотные толщи песка, плотины и дамбы, рассчитанные на средний напор воды.
Неорганизованные намывы служат для перемещения грунтовых пород, чтобы освободить земельный участок для дальнейшего проведения работ, таких как добыча природных строительных материалов и других полезных ископаемых.
Возведение грунтовых сооружений и освобождение территорий гидромеханизацией включает в себя несколько этапов:
- Гидравлическая разработка грунтовых пород с использованием гидромониторов и землесосных снарядов.
- Гидротранспортировка добытого материала по распределительным и магистральным трубопроводам.
- Организация намыва техногенного грунта в земляные сооружения или на свободные территории, которые должны служить для размещения добытой горной породы.
Несущая способность зданий и сооружений
Существуют разные способы оценки несущей способности. Некоторые из них универсальные и подходят для объектов любого функционального профиля, другие применимы только к определенной категории сооружений.
Одна из методик оценки несущей способности позволяет достаточно точно определить остаточный ресурсный потенциал конструктивных элементов. Она подразумевает учет всех негативных факторов, которые могут вызвать износ сооружения: атмосферных осадков, перепадов температуры и влажности, ветра, особенностей рельефа, интенсивной или небрежной эксплуатации, коррозии, эрозии.
Проверка несущей способности традиционными способами используется уже достаточно давно. Стандартные методы подразумевают создание вибрационных динамических и механических импульсных воздействий определенной интенсивности и силы. Их направляют на отдельные элементы здания через грунт и фундамент. Для регистрации изменений на исследуемый объект устанавливают специальные датчики. После проведения испытаний полученные результаты обрабатывают в специальной компьютерной программе, которая позволяет рассчитать, чему равна текущая несущая способность зданий и сооружений.
Одна из особенностей методики оценки возможных дополнительных нагрузок: необходимо учитывать давление не только на один участок, но и на всю армированную конструкцию. Специалист должен выполнить пространственный расчет, который охватывает все взаимосвязанные элементы. Конструктивная оценка предполагает учет нагрузок дополнительного воздействия, временных, динамических, естественных и постоянных факторов. Такой комплексный подход считается наиболее полным и достоверным. Методика позволяет увидеть фактическую картину и спрогнозировать возможность увеличения нагрузки на здание без негативных последствий.
Несущая способность кирпичной кладки
Простенки кладки из кирпича выполняют роль несущих элементов сооружения. Прочностные показатели конструкции могут со временем снижаться из-за влияния внешних негативных факторов.
Для определения фактической несущей способности специалисты измеряют, рассчитывают и изучают следующие показатели:
- сечение стены с отделкой;
- высота стены;
- ширина стены;
- тип, марка и состав кирпича;
- марка, состав и другие особенности раствора;
- прочность кирпича и раствора в кладке.
Прочность кладки можно определить методами неразрушающего контроля. После получения необходимых вводных данных несущую способность рассчитывают по формуле. Она требуют применения некоторых коэффициентов – длительной нагрузки и продольного изгиба.
Оценка несущей способности бетонных и железобетонных конструкций
Для определения несущей способности конструктивных элементов из бетона и железобетона, которые имеют нормальное по отношению к продольной оси сечение, применяют методику предельного равновесия по нормативной документации. В этом случае руководствуются следующими упрощающими принципами:
- игнорируют сопротивление бетона растяжению;
- сжимающие напряжение в бетоне равны между собой;
- растягивающие напряжение в арматуре не больше расчетных сопротивлений.
Для повышения прочностных характеристик в конструктивные элементы включают вкладыши из цементного бетона или другого низкодеформируемого материала, внутри которого расположены металлические элементы.
Особенности расчета несущей способности фундамента
Для грунта и фундамента максимально допустимую нагрузку исследуют в единой связке. Для укрепления слабого основания потребуются сваи. На грунте с плотной и устойчивой структурой можно использовать колонны или ленточный фундамент для стен. Для выбора оптимального варианта необходимо изучить в лаборатории физико-химические параметры почвы в данной местности.
Несущая способность фундамента во многом зависит от количественных и качественных свойств материала, наличия дефектов, арматуры, соответствия фактических и проектных данных. Любые негативные изменения в состоянии основания здания через некоторое время отразятся на стенах, перекрытиях и других верхних конструктивных элементах.
Изучение несущей способности основания требуется в следующих случаях:
- Объект строится или возведен в сейсмически активном районе.
- На основание воздействуют серьезные по силе горизонтальные нагрузки: фундаменты распорных конструктивных элементов, подпорные стены.
- Объект возведен на откосе или недалеко от него.
- Основание состоит из биогенных и пылевато-глинистых грунтов, насыщенных водой.
- Основание сложено из гранита, песка и глины, которые отталкивают воду.
Несущая способность фундамента должна предотвращать вероятность сдвигов и обеспечивать высокую устойчивость и прочность оснований здания.
Несущая способность сваи указывает, какую нагрузку она способна выдержать при максимально допустимом уровне деформации грунта. Задача специалиста на стадии проектирования – рассчитать оптимальное число элементов.
Для оценки показателя используют два основных метода: уровень сопротивления по боковой поверхности и уровень сопротивления грунта под острием. Оптимальный вариант определяют исходя из характеристик почвы.
Особенности определения несущей способности вертикальных и горизонтальных конструктивных элементов
К перекрытиям относятся плиты, диски и балки. Они взаимосвязаны и объединены для выполнения единой функции. Перекрытие – это конструктивный элемент, расположенный между этажами. Он опирается на балку.
Расчет максимально допустимой нагрузки на перекрытие начинается с визуального осмотра. Инженер должен зафиксировать дефекты и особенности конструктивных элементов , выполняющих роль опоры.
Различают два типа несущих частей здания:
- Горизонтальные: балки, диски, плиты. На них приходится наибольшая нагрузка.
- Вертикальные: колонны, стены, столбы.
Балки – важный опорный элемент в зданиях с колоннами. Для их изготовления используют бетон. В старых домах встречаются балки из деревянных лагов, железных элементов и асфальтобетона. В этом случае специалист должен изучить состав балки, выяснить фактическую несущую способность, и насколько она изменилась со временем.
При проектировании инженеры должны закладывать несущую способность с некоторым запасом. Это помогает минимизировать вероятность перегрузки, но не отменяет необходимость в регулярных технических обследованиях здания.
К вертикальных несущим конструкция относятся столбы и колонны, имеющие отдельный фундамент, который по форме напоминает подстаканник. Чем больше нагрузка и площадь объекта, тем глубже должны быть заложены опорные элементы. Колонны обычно изготавливают из монолита или железобетона. Распространенный материал для возведения столбов – кирпич и камень. Эта вертикальная несущая конструкция встречается в старых малоэтажных домах.
Несущая способность кровли и фасада
Основная нагрузка на кровлю – это снег, ветер и другие погодные факторы. Если на стадии проектирования кровлю не планировалось эксплуатировать, то ее несущая способность снаружи будет ниже, чем с внутренней стороны.
Фасад может быть несущим и не несущим элементом сооружения. Его навешивают на колонны или устанавливают на отдельный элемент. В последнем случае фасад называют самонесущим.
Несущая способность объекта – изменяющаяся во времени величина. С увеличением срока эксплуатации и при воздействии агрессивных внешних факторов прочностные характеристики и устойчивость сооружения снижается. Предотвратить аварии и другие нежелательные ситуации на объекте поможет регулярное экспертное обследование.
Компания «Департамент» предлагает услуги по диагностике и определению несущей способности здания. Специалисты используют современное оборудование и методы неразрушающего контроля, которые позволяют максимально быстро получить достоверные результаты. Узнать подробности, стоимость и задать вопросы можно представителю компании «Департамент» по телефону или электронной почте.