Irtishspb.ru

Строительство и Ремонт
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловое расширение красного кирпича

Свойства огнеупорных материалов

Огнеупорные материалы характеризуются огнеупорностью, температурой начала деформаций под нагрузкой, шлакоустойчивостью, температурным коэффициентом линейного расширения, теплоемкостью, тепло — и температуропроводностью, термической стойкостью, электропроводностью, механической прочностью (при обычных и высоких температурах), плотностью, кажущейся плотностью, пористостью, газопроницаемостью, постоянством форм и размеров при высоких температурах, внешним видом, макро — и микроструктурой и др. Все эти свойства условно можно разбить на три группы: теплофизические и термические, физико-технические, физико-химические.

  1. Линейное расширение при нагревании
  2. Теплопроводность
  3. Теплоемкость
  4. Температуропроводность

Линейное расширение при нагревании

Линейным расширением называется свойство материала увеличивать свои линейные размеры пропорционально количеству полученного тепла; обозначается оно ?.

Под линейным расширением ? понимают обратимое изменение размеров материала при нагревании (расширение) или при охлаждении (сжатие). Коэффициент линейного расширения а показывает удлинение единицы длины материала при нагревании его на один градус, отнесенное к первоначальной длине испытуемого образца. Чтобы линейное расширение выразить в процентах, для этого ? умножают на температуру, при которой определяют расширение, и на 100. Например, температурный коэффициент линейного расширения шамота при 800°С составляет 4,5-10-6. Следовательно, 1 м шамотной кладки в этом случае удлиняется на 1 ·4,5· 10-6·800· 100 = 3,6 мм.

Теплопроводность

Способность материалов и веществ, в том .числе и огнеупоров, проводить тепло называется теплопроводностью (?), выражающей количество тепла, которое проходит через стенку площадью 1 м2 толщиной 1 м в 1 ч при разности температур на противоположных поверхностях стенки 1 К (один градус Кельвина). Единица измерения теплопроводности — Вт/ (м · К).

Теплопроводность огнеупорных материалов определяется в соответствии с ГОСТ 12170—66 при стационарном (ловом потоке и температурах нагрева на горячей поверхности испытуемого плоского образца от 400° до 1000°С.

Теплоемкость

Теплоемкость огнеупорных материалов — количество тепла, необходимого на нагревание единицы массы материала на 1°С. Удельную теплоемкость измеряют в Дж/(кг-°С).

Различают истинную теплоемкость, т. е. теплоемкость материала при данной температуре, и среднюю теплоемкость — теплоемкость в определенном интервале температур. На практике_ обычно пользуются значениями средней теплоемкости с, которая может быть подсчитана по формуле

Читайте так же:
Что такое кирпич нпж

C0 — теплоемкость материала при 0°С; А и В — эмпирические коэффциенты; t — температура, °С

Температуропроводность

Температуропроводсть а характеризует процесс установления температурного градиента в материале при его нагревании или охлаждении и имеет размерность м2/ч.

Температуропроводность материала а зависит от его теплоемкости с, теплопроводности ? и кажущейся плотности ? и определяется по формуле

Температуропроводность материала необходимо знать я определения количества тепла, теряемого в окружающую среду тепловыми установками периодического действия.

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Практическая плотность тяжелого (обычного) бетона составляет 2,3 г/см3 = 2300 кг/м3. (1,8-2,7 г/см3 ).

Усадка и набухание бетона.

Изменение размера бетонных конструкций из-за изменения влажности бетона это усадка и набухание. Происходит даже при неизменной температуре.

Усадка бетона имеет довольно сложную природу, но факт в том, что при твердении бетона на воздухе — при высыхании он будет иметь усадку порядка 0,3 мм на каждый метр линейного размера. Чем больше была доля цемента в растворе, тем выше усадка. При большой толщине бетона он высохнет снаружи, а внутри — еще нет, что приводит к появлению внутренних напряжений и дефектам.

Обратный процесс — набухание сухого бетона под действием влаги характеризует та-же величина 0,3 мм/м. Чем больше была доля цемента в растворе, тем выше набухание.

Поэтому, даже для работы бетонной конструкции в условиях постоянной температуры необходимо преусматривать усадочные швы.

Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Изменение линейного размера бетона под действием температуры характеризуется линейным коэффициентом теплового (температурного) расширения. Характерной величиной коэффициента для бетона является 0,00001 (°С)-1, следовательно, при изменении температуры на 80 °С (-40/+40 °С) расширение достигает примерно 0,8 мм/м. Таким образом, в любой бетонной конструкции необходимы температурные швы.

Читайте так же:
Разобрать гараж по кирпичу

Температурно усадочный шов в РФ уж никак не может быть менее 1,1 мм на метр линейного размера (0,3 мм — усадка, 0,8 — температурный), в СНИПах — величины выше и они, конечно, обязательны, когда обязательны. Имейте в виду, что температурные колебания более 80 °С почти наверняка вызовут растрескивание бетона с жестким наполнителем из-за разницы в тепловом раширении раствора и наполнителя.

Теплопроводность монолитного бетона в воздушно-сухом состоянии 1,35 Вт/(м*°С) = 1,5 ккал/(ч*м*°С). Высокая теплопроводность тяжелого бетона требует обязательного утепления наружных бетонных стен.

Теплопроводность пористых бетонов — от 0,35 до 0,7 Вт/(м*°С) = 0,3-0,6 ккал/(ч*м*°С), но при огромном снижении прочности.

Теплоемкость удельная тяжелого и пористых бетонов в сухом состоянии — порядка 1 кДж/(кг*°С) = 0,2 ккал/(кг °С)

Теплоемкость объемная тяжелого бетона — порядка 2,5 кДж/(м3*К) а пористых — зависит от плотности.

Теплоемкость удельная бетонной смеси (незастывшей) сотавляет порядка 1,5 кДж/(кг*°С) = 0,3 ккал/(кг °С), но помните — смесь легче тяжелого бетона и тяжелее пористого.

1.2. Коэффициент температурного расширения конструкционных материалов

Поскольку деформация является безразмерной величиной, этот коэффициент температурного расширения имеет размерность, обратную изменению температуры. В системе СИ размерность αТ может выражаться как 1/К (величина обратная единице СИ Кельвин) или 1/ºС (величина обратная градусу Цельсия). Величина αТ является одинаковой в обоих случаях, так как изменение температуры является численно одинаковым как в градусах Кельвина, так и в градусах Цельсия.

Удобно представлять величину коэффициента температурного расширения в единицах 10 -6 /ºС или мкм/м·ºС. Последний вид особенно удобен – он наглядно показывает насколько микрометров удлиняется один метр материала при увеличении температуры на один градус температуры.

Информация о коэффициентах температурного расширения некоторых конструкционных материалов представлена в таблице 1.

Читайте так же:
Автомат станок для производства кирпича

Таблица 2.1 — Коэффициент температурного расширения конструкционных материалов [1]

Компенсаторы расширения труб ПП

Вследствие теплового расширения полипропиленовых труб из-за высоких температур, через некоторое время трубы удлиняются и начинают провисать. В связи с этим на магистралях, длина которых более 10 м, используют гибкие компенсаторы. Читайте также: «Как сделать теплоизоляцию полипропиленовых труб, какой материал использовать при этом».

Расширительные компенсаторы являются простыми гибкими соединительными изделиями в форме завернутой петли. Эта деталь очень важна, так как она устраняет воздействие на магистраль высоких температур. К тому же, она защищает систему от повышенного давления. Кроме того, что деталь имеет невысокую стоимость, ее еще и легко устанавливать.

Разновидности компенсаторов

Бывают такие виды устройств для нивелирования теплового удлинения полипропиленовых труб:

  1. Осевые. Такие компенсаторы имеют крепежные направляющие элементы, и выполняют функцию неподвижных опор. Их легко устанавливать.
  2. Сдвиговые. Такие детали могут двигаться в двух направлениях. У них есть одно- или двухсильфонная гофра из нержавеющей стали. Их скрепление между собой происходит при помощи арматурного соединения.
  3. Поворотного типа. Благодаря им можно нейтрализовать линейное удлинение на отрезке поворота трубы и закрепить поворотный угол. Применяются такие детали в местах, где есть необходимость изменить направление сети под прямым углом.
  4. Универсальные. У таких устройств присутствуют три типа рабочего хода: угловой, поперечный и осевой. Такие изделия чаще всего используются при сооружении малой магистрали, а также тогда, когда нет возможности произвести монтаж компенсаторов сильфонного типа (прочитайте также: «Типы компенсаторов для полипропиленовых труб и способы их установки»).
  5. Фланцевого типа. Представляют собой устройства из резины для устранения температурного расширения полипропиленовых труб, а точнее, для подавления ударной волны, или для сглаживания осевых неточностей магистрали. Волна может возникать вследствие резкого увеличения давления внутри системы.
Читайте так же:
Знак кирпич для выкупа

Закрепляются такие виды компенсаторов либо сварным, либо фланцевым способом.

Отличительные особенности компенсаторов:

  • Нейтрализация вихревого потока и установление нормального давления внутри труб.
  • Система получает достаточную герметичность.
  • Трубная магистраль прослужит дольше.

Каким требованиям должен отвечать температурный шов? Конструкция шва должна такой, чтобы его монтаж не вызывал затруднений и обеспечивал свободный доступ к нему на тот случай, если потребуется ремонт. Термошов всегда делается вертикальным. В процессе его прокладки, под швом стены — над тем местом, где стена соприкасается с фундаментными блоками, по технологии нужно оставлять карман в кирпича высоты кладки. Карман делается, чтобы шов, в процессе осадки здания не уперся в кладку фундамента, что может привести к деформациям стены в этом месте.

Для того чтобы быть уверенным в защищенности кладки от температурных деформаций, недостаточно сделать «усредненный» термошов. Должны быть проведены расчеты ширины и шага шва, а после его обустройства нужно вести наблюдения для того, чтобы выявить, как колебания температуры влияют на отдельные узлы конструкции.

  • Таблица-справочник для некоторых металлов (PDF)
  • Коэффициент линейного расширения сталей по ПНАЭ Г-7-002-86

Wikimedia Foundation . 2010 .

коэффициент теплового расширения — šiluminio plėtimosi koeficientas statusas T sritis fizika atitikmenys: angl. coefficient of thermal expansion; thermal expansion coefficient vok. Wärmeausdehnungskoeffizient, m rus. коэффициент теплового расширения, m pranc. coefficient de… … Fizikos terminų žodynas

коэффициент теплового расширения — šiluminio plėtimosi koeficientas statusas T sritis Energetika apibrėžtis Nedimensinis dydis, nusakantis dujų savybę plėstis nuo šilumos ir reiškiamas dujų tūrio po išsiplėtimo ir pradinio dujų tūrio santykiu. atitikmenys: angl. coefficient of… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

объемный коэффициент теплового расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN volumetric coefficient of thermal expansion … Справочник технического переводчика

Читайте так же:
Все про обжиг кирпича

усреднённый по активной зоне ядерного реактора коэффициент теплового расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN core average thermal expansion coefficient … Справочник технического переводчика

Коэффициент линейного расширения — Коэффициент теплового расширения величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают: Содержание 1 Коэффициент… … Википедия

Коэффициент термического расширения — Коэффициент теплового расширения величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают: Содержание 1 Коэффициент… … Википедия

коэффициент изобарического теплового расширения — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN coefficient of isobaric thermal expansion … Справочник технического переводчика

коэффициент поверхностного теплового расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coefficient of superficial expansion … Справочник технического переводчика

Температурный коэффициент объемного расширения пластовой нефти — 22. Температурный коэффициент объемного расширения пластовой нефти Количественная характеристика теплового расширения пластовой нефти, представляющая отношение относительного изменения объема пластовой нефти при его изобарическом нагревании… … Словарь-справочник терминов нормативно-технической документации

Почему происходит расширение?

Все знают, что весь материал состоит из различных субатомных частиц. Изменяя температуру, повышая или понижая, эти атомы начинают процесс движения, который может изменить форму объекта.

Когда температура повышается, молекулы начинают быстро двигаться из-за увеличения кинетической энергии, и, следовательно, форма или объем объекта будут увеличиваться.

В случае отрицательных температур происходит обратное, в этом случае объем объекта обычно сокращается из-за низких температур..

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector