Irtishspb.ru

Строительство и Ремонт
11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое сопротивление воздухопроницанию штукатурок

Сопротивление теплопередаче ограждающих конструкций

Сопротивление теплопередаче ограждающих конструкций, коэффициент теплосопротивления, теплосопротивление, термическое сопротивление — один из важнейших теплотехнических показателей строительных материалов.

При общих равных условиях, это отношение разности температур на поверхностях ограждающей конструкции к величине мощности теплового потока (теплопередача за один час через один квадратный метр площади поверхности ограждающей конструкции, Q ˙ A >_> ) проходящего сквозь нее, то есть R = Δ T / Q ˙ A >_> . Сопротивление теплопередаче отражает теплозащитные свойства ограждающей конструкции и складывается из термических сопротивлений отдельных однородных слоев конструкции.

Вентиляция в теплом доме

Хочу лишь еще раз обратить внимание на то, что застройщики в подавляющем большинстве до сих пор используют простейшую естественную систему вентиляции в доме. Систему, в которой не предусмотрен организованный приток воздуха, отсутствуют специальные устройства для подачи воздуха в дом, а самое главное — нет возможности контроля и регулирования количества подаваемого и удаляемого из помещений воздуха.

В результате, нередко в доме повышенная влажность воздуха, выпадает конденсат на окнах и в других местах, появляется грибок и плесень. Обычно, это говорит о том, что вентиляция не справляется со своей задачей — удалять, выделяемые в воздух помещения, загрязнения и избыточную влагу. Количество уходящего через вентиляцию воздуха явно недостаточно.

В других домах зимой чаще наоборот, воздух очень сухой с относительной влажностью менее 30% (комфортная влажность 40-60%). Это свидетельствует о том, что через вентиляцию уходит слишком много воздуха. Поступающий в дом морозный сухой воздух не успевает насытиться влагой и сразу уходит в вентканал. А с воздухом уходит и тепло. Получаем дискомфорт микроклимата помещений и потери тепла.

Интересно то, что традиционные для России дома со стенами из бревна или бруса не имеют специальных устройств для вентиляции.

Вентиляция помещений в таких домах происходит за счет неконтролируемой воздухопроницаемости стен, перекрытий и окон, а также в результате перемещения воздуха через дымоход при топке печи.

Многие считают высокую воздухопроницаемость деревянных стен достоинством — стены «дышат». По их мнению в деревянном доме легче дышать, комфортнее микроклимат. Действительно, большая воздухопроницаемость деревянного дома увеличивает воздухообмен в доме, снижает влажность. Но такая вентиляция деревянного дома совершенно неуправляемая. Расплачиваться за этот «комфорт» приходится высокими теплопотерями через конвекцию.

В конструкциях современного деревянного дома все чаще применяют различные способы герметизации — машинное профилирование сопрягаемых поверхностей бревен и брусьев, герметики для межвенцовых швов, паронепроницаемые и ветрозащитные пленки в перекрытиях, герметичные окна. Все чаще стены деревянного дома закрывают утеплителем. В комнатах, как правило, нет печей. Система вентиляции в таких домах просто необходима.

Особенности минераловатных плит

Минеральные плиты имеют свою классификацию. Бывают мягкими, полужесткими и жесткими. Есть еще классификация рулонных, плиточных и жидких утеплителей. В области строительства используются полужесткие с жесткими.

Первые нужны, чтобы тщательно заизолировать стеновые перегородки, крыши и многослойные системы. Жесткие минплиты требуются, чтобы утеплить кровлю, фасады и полы. Мягкие плиты нужны, чтобы заизолировать коммуникации.

Области применения

Минеральная вата плиты активно используются в жилом строительстве. Это самый распространенный домашний утеплитель для стен, пола и потолка. Применяется также, чтобы утеплять перекрытия, межстропительные пространства, фасад, крыши и чердаки, водоснабжающие и отопительные приборы, сантехнические трубопроводные системы.

Активно используются в промышленном строительстве. Нередко его используют как на новых сооружениях, так и на старых. Сегодня эти плиты самые безопасные, экологичные и эффективные тепловые и звуковые изоляторы.

Читайте так же:
Штукатурка гипсовая жизнеспособность раствора

Теплотехнический расчёт стены

Теплотехнический расчёт однородной наружной стены здания

Исходные данные

Назначение здания — административное.
Расчетная температурой наружного воздуха в холодный период года, text = -40 °С;
Расчетная средняя температура внутреннего воздуха здания, tint = +20 °С;
Средняя температура наружного воздуха отопительного периода, tht = -8 °С;
Продолжительность отопительного периода, zht = 241 сут.;
Нормальный влажностный режим помещения и условия эксплуатации ограждающих конструкций — А (сухой режим помещения в нормальной зоне влажности).
Коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, n = 1;
Коэффициент теплоотдачи наружной поверхности ограждающей конструкции, αext = 23 Вт/(м²•°С);
Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, αint = 8.7 Вт/(м²•°С);
Состав наружной стены:

№ слояСлойδ, ммλ, Вт/(м °С)γ, кг/м 3
1Кладка из кирпича керамического пустотного1200.641300
2Минераловатный утеплитель1500.03960
3Кладка из кирпича керамического полнотелого3800.811600
4Штукатурка ц.п.200.911800

Определение требуемого сопротивления теплопередаче

Определим величину градусо-суток Dd в течение отопительного периода по формуле 1 [СП 23-101-2004]:

где tint — расчетная средняя температура внутреннего воздуха здания [табл.1, СП 23-101-2004];
tht — средняя температура наружного воздуха отопительного периода [табл.1, СП 23-101-2004];
zht — продолжительность отопительного периода [табл.1, СП 23-101-2004].

Определим требуемое значение сопротивления теплопередачи Rreq по табл. 3 [СП 50.13330.2012]

где Dd — градусо-сутки отопительного периода;
а=0,0003 [табл.3, СП 50.13330.2012]
b=1,2 [табл.3, СП 50.13330.2012]

Rreq = 0.0003*6748+1.2=3.2244 м 2 *°С/Вт,

Определение приведённого сопротивления теплопередаче стены

где αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 *°С), принимаемый по табл. 4 СП 50.13330.2012;
αн — коэффициент теплоотдачи наружной поверхности ограждающей конструкций для условий холодного периода, Вт/(м 2 *°С), принимаемый по таблице 6 СП 50.13330.2012;

Rs — термическое сопротивление слоя однородной части фрагмента (м 2 *°С)/Вт, определяемое по формуле:

δs — толщина слоя, м;
λs — расчетный коэффициент теплопроводности материала слоя, Вт/(м*°С), принимаемый согласно приложения Т СП 50.13330.2012.
ys уэ — коэффициент условий эксплуатации материала слоя, доли ед. При отсутствии данных принимается равным 1.

Расчетное значение сопротивления теплопередаче, R:

R > Rreq — Условие выполняется

Толщина конструкции, ∑t =675 мм;

Определение температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции

Значение выразим из формулы (5.4) СП 50.13330.2012

Δt н > Δt, 4.5 °C > 1.469 °C — условие выполняется.

Моделирование однородной стены в ЛИРА САПР. Решение стационарной задачи

Схема ограждающей конструкции:

Создаём задачу в 15-м признаке схемы. Рассмотрим участок стены, длиной 1 м

Шаг 1 геометрия

Шаг 2 Создание элементов конвекции

Моделируем стержни по наружной и внутренней граням стены. Стержням следует присвоить тип КЭ №1555. Они являются своего рода граничными условиями и, в то же время, воспринимают температуру воздуха.

Шаг 3 характеристики материалов

В окне задания типов жёсткости следует создать жёсткость: пластины Теплопроводность (пластины). В окне характеристик жёсткости вводятся параметры Н — толщина пластины, К — коэффициент теплопроводноти, С — коэффициент теплопоглощения, R0 — удельный вес.

Характеристики слоёв стены:
Кирпич облицовочный пустотелый Н=100 см, К=0.64 Дж/(м*с*°С);
Теплоизоляция Н=100 см, К=0.039 Дж/(м*с*°С);
Кирпич полнотелый Н=100 см, К=0.81 Дж/(м*с*°С);
Штукатурка ц.п. Н=100 см, К=0.76 Дж/(м*с*°С);

Читайте так же:
Штукатурка gouttelette как наносить

Для элементов конвекции, следует создать типы жёсткости Конвекция (двухузловые). Для таких элементов задаются коэффициенты конвекции внутреннего и внешнего слоя.

Шаг 4 Внешняя нагрузка

Через внешнюю нагрузку задаётся температура воздуха для элементов конвекции. Для этого, в разделе нагрузки, нужно открыть Заданная t.

Температура на внутренней поверхности ограждающей конструкции составляет 18.531 °С (результат замера температуры в узле).

Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР

Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:

Теплотехнический расчёт наружной стены здания с учётом неоднородности

Исходные данные

Для расчёта принимается конструкция стены, рассмотренная в предыдущем примере. Неоднородностью будет выступать кладочная сетка, служащая для крепления облицовки к несущему слою кладки. Параметры сетки: d=3 мм, шаг стержней 50х50 мм.

Определение приведённого сопротивления теплопередаче с учётом неоднородностей

Приведённое сопротивление теплопередаче фрагмента теплозащитной оболочки здания R пр , (м 2 *°C)/Вт, следует определять по формуле:

где R усл — осреднённое по площади условное сопротивление теплопередаче фрагмента теплозащитной оболочки здания либо выделенной ограждающей конструкции, (м 2 *°C)/Вт;
lj — протяжённость линейной неоднородности j-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м/м 2 ;
ΨI — удельные потери теплоты через линейную неоднородность j-го вида, Вт/(м*°С);
nk — количество точечных неоднородностей k-го вида, приходящихся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, шт./м 2 ;
χk — удельные потери теплоты через точечную неоднородность k-го вида, Вт/°С;
ai — площадь плоского элемента конструкции i-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м 2 /м 2 ;

где Ai — площадь i-й части фрагмента, м 2 ;
Ui — коэффициент теплопередачи i-й части фрагмента теплозащитной оболочки здания (удельные потери теплоты через плоский элемент i-го вида), Вт/(м 2 *°С);

Определение удельных потерь теплоты кладочной сетки

Кладочная сетка, через которую осуществляется связь между облицовкой и несущим слоем, является линейной неоднородностью. Удельные потери теплоты через линейную неоднородность, определяются по СП 230.1325800.2015, приложение Г.7 Теплозащитные элементы, образуемые различными видами связей в трёхслойных железобетонных панелях.

Удельное сечение металла на 1 м.п. в рассматриваемом примере составит S*(1000/50)=3.14159*d 2 /4*(1000/50)=1.41372 см 2 /м

Удельные потери теплоты будут определяться по интерполяции между значениями, найденными по таблицам Г.42 и Г.43 СП 230.1325800.2015

Таблица Г.42 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 0,53 см 2 /м

dут, ммλ = 0,2λ = 0,6λ = 1,8
500,0050,0080,011
800,0050,0070,009
1000,0040,0070,008
1500,0040,0050,006

Таблица Г.43 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 2,1 см 2 /м

dут, ммλ = 0,2λ = 0,6λ = 1,8
500,0180,0310,043
800,0180,0280,035
1000,0170,0260,031
1500,0150,0210,024

Обозначения в таблицах:
— толщина слоя утеплителя dут, мм;
— теплопроводность основания λ, Вт/(м*°С), для кирпичной кладки из полнотелого керамического кирпича принимается λ = 0.56;
— удельное сечение металла на 1 м.п. сетки, см 2 /м.

Потери теплоты по таблице Г.42:

Потери теплоты по таблице Г.43:

Итоговое значение потерь теплоты:

Суммарная протяжённость линейных неоднородностей Σlj = 2 м.

Подставив полученные значения в формулу (Е.1), получим:

Моделирование неоднородной стены в ЛИРА САПР. Решение стационарной задачи

Для построения модели неоднородной стены, принимается модель, созданная на предыдущем этапе. Теплопроводные включения моделируются как стержневые элементы теплопроводности, которые пересекают три слоя стены: кладка, теплоизоляция, облицовка. Стержни расположены с шагом 40 см по высоте. Теплопроводность арматурной стали 58 м 2 *°С/Вт.

Читайте так же:
Штукатурка ветонит до 10мм

Температура на внутренней поверхности ограждающей конструкции составляет 18.087 °С. (среднее значение температуры на внутренней поверхности стены).

Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР

Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:

Сравнение результатов расчёта

Сравнение будем выполнять в табличной форме:

Технология получения пенопласта

Изначальный размер гранул сырья предопределяют качество и сферу применения готового пенопласта. Наиболее плотные листы получаются из самых маленьких гранул. Добавление вторичного сырья также отражается на конечном продукте.

В зависимости от первоначального размера гранул во многом зависят прочностные качества конечного продукта. Чем меньше размер гранул, тем плотнее материал получится на выходе. При этом качество впрямую зависит и от добавок вторичного сырья. Сам процесс состоит из нескольких этапов.

Процесс изготовления пенопласта

  1. Многократное воздействие паром под высоким давлением на полистирол. В этот момент из сырья выходит фреон. Сырье увеличивается в объеме, в среднем, в 50 раз, получаются гранулы.
  2. Полученные шарики проходят этап кондиционирования в силосе при специальной температуре и интенсивной продувке воздухом.
  3. Из гранул в блок-форме прессуют блоки материала, которые потом охлаждают с помощью вентиляторов.
  4. Блоки кондиционируют и раскраивают на станках на листы нужной толщины и размеров.

Основные источники тепловой энергии

1. Сжигание органических природных ресурсов. Сжигание органических природных ресурсов является в настоящее время главным источником получения энергии тепла. В мире различают три типа органических природных ресурсов, выступающих в качестве природного топлива:

1.1 твердое топливо. Одними из самых распространенных видов твердого топлива являются каменный уголь, торф, горючие сланцы;

1.2 жидкое топливо. В качестве жидкого топлива может служить нефть и различные продукты ее переработки;

1.3 газообразное топливо. Это природный газ, основным компонентом которого является метан;

2. Сжигание промышленных и бытовых отходов. Эта технология применяется со второй половины двадцатого века. Мусоросжигательные заводы позволяют избавляться от мусорных отходов и, вместе с тем, вырабатывают тепло;

3. Управляемая ядерная реакция деления. В результате ядерной реакции, которая происходит в специальных ядерных реакторах, высвобождается большое количество тепловой энергии, а материалы, поддерживающие реакцию, называются ядерным топливом;

4. Альтернативные или возобновляемые источники энергии тепла. К альтернативным источникам тепла относят энергию солнца, геотермальную энергию горячих источников планеты.

Паропроницаемость стен и материалов

Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.

Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Читайте так же:
Чтобы штукатурка была эластичной

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Читайте так же:
Штукатурка газобетонных стен виде

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ?, ?
Металлы ?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector